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ABSTRACT: The extensions of the Riemannian structure include the Finslerian
one, which provided in recent years successful models in various fields like Biology,
Physics, GTR, Monolayer Nanotechnology and Geometry of Big Data. The present
article provides the necessary notions on tensor spectral data and on the HO-SVD
and the Candecomp tensor decompositions, and further study several aspects related
to the spectral theory of the main symmetric Finsler tensors, the fundamental and
the Cartan tensor. In particular, are addressed two Finsler models used in Langmuir-
Blodgett Nanotechnology and in Oncology. As well, the HO-SVD and Candecomp
decompositions are exemplified for these models and metric extensions of the eigen-
problem are proposed.
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1. Introduction

The attempt of extending the eigendata of linear operators in finite-dimensional vector spaces to symmetric covariant
tensors in a natural way was a notable subject along recent years, providing different approaches [1, 2]. Related to
this, it was shown that there exist also multiple ways to provide canonic Tucker type decompositions for tensors
([3]-[8]). On the other hand, remarkable symmetric tensors which occur in the Finslerian geometric models ([9]-[13]),
which are relevant for the structure naturally admit relevant eigendata and Tucker decompositions ([14]-[16]). The
works dedicated to their various applications (we mention [17]-[20]) are accompanied by the the strive to obtain
optimal symbolic computational means (e.g., [21]-[27]).

The present work illustrates this multilinear algebraic approach for two pseudo-Finsler structures: one produced
by the process of formation of the Langmuir-Blodgett monolayers from Nanotechnology [28, 29] and the second of
Randers type, statistically associated to the Garner dynamical system from Oncology [30, 31]. Covariant extensions
for the tensor eigenproblem are proposed and discussed, within the Riemannian and Finslerian frameworks.
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2. Tensorial extensions of the matrix eigenproblem

The attempt of naturally extending the eigenproblem for bilinear forms in finite-dimensional vector spaces to
multi-index symmetric covariant tensors (N -way arrays) can be achieved in several ways [1, 2], as follows.

Let T ∈ T 0
m(Rn) be a symmetric tensor field on the flat manifold V = Rn.

Definition 2.1. For T ∈ T 0
m(Rn) a symmetric tensor field on the flat manifold V = Rn.

a) The scalar λ ∈ R and the vector y ∈ T 1
0 (Rn) ≡ Rn are respectively called Z−eigenvalue (λ ∈ σZ(T )), and the

associated Z−eigenvector to λ, if they satisfy the system of n+ 1 equations:

T ◦m−1 y = λy; g(y, y) = 1,

where T ◦m−1 y = Tk,i2,...,im y
i2 . . . yim · dxk. Moreover, for λ ∈ C and y ∈ Cn these are respectively called

E−eigenvalue and E−eigenvector.

b) The scalar λ ∈ R and the vector y ∈ T 1
0 (Rn) ≡ Rn are respectively called H−eigenvalue (λ ∈ σH(T )), and the

associated Z−eigenvector to λ, if they satisfy the polynomial homogeneous of order m− 1 system of n equations:

(T ◦m−1 y)k = λ(yk)m−1, k ∈ 1, n.

Moreover, for λ ∈ C and y ∈ Cn these are respectively called N−eigenvalue and N−eigenvector.

It was shown that σZ(T ) 6= ∅ and σE(T ) 6= ∅ for even-order symmetric tensors. As well, it was proved that the
following concept of B−eigenvalue/eigenvector embraces both the H− and N−cases of eigendata and, the Z− and
E−ones (in the even-order case).

Definition 2.2. For two given m−order n−dimensional symmetric tensors T,B, we call B−eigenvalue and cor-
respondingly B−eigenvector the couple (λ, y) ∈ K ×Kn (K ∈ {R,C}) which satisfies the conditions:

n∑
i2,...,im=1

(Tki2...im − λBki2...im)yi2 . . . yim = 0,∀k ∈ 1, n. (2.1)

Then the following result holds true [1, 2]:

Proposition 2.3. a) The Z− and E−eigenvalues are obtained as particular solutions of (2.1), assuming m even,
for:

Bi1...im = δi1i2 . . . δim−1im .

b) The H− and N− eigenvalues are obtained as particular solutions of (2.1), for

Bi1...im = δi1...im =

{
1, for i1 = . . . = im,

0, otherwise.

The Candecomp polyadic decomposition.

For an arbitrary tensor T ∈ RI1×I2×···IN , the general Candecomp (Parafac) decomposition has the form [3, 4]:

T =

R∑
r=1

λrv
(1)
r ⊗ . . .⊗ v(N)

r ,

where B(s) = [v
(s)
1 , . . . ,v

(s)
R ] ∈ MIr×R(R), s ∈ 1, R are the modal matrices, λr ∈ R (r ∈ 1, R) are scalars and

R ∈ 0, N is the the rank of the tensor [3, 4].

The best rank-one approximation of T ∈ T 0
m(Rn), is the homogeneous polynomial y− dependent tensor A = λ⊗my∗,

which is global minimizer for the distance ||T − λ ⊗m y||F for λ ∈ R, ||y||2 = 1, where || · ||F is the Frobenius
norm, and where ⊗my∗ is be regarded as an m−th order n−dimensional degenerate tensor of rank 1, with the
components yi1 · . . . · yim [1, 2]. An important result which show that this approximate is an efficient estimate for
T in applications, is the following:

Theorem 2.4. Consider T ∈ T 0
m(Rn). Then:

a) For λ ∈ σZ(T ) and y its associated Z−eigenvector, we have λ = Tym and

||T − λ⊗m y||2F = ||T ||2F − λ2 ≥ 0.

b) The best rank one approximation of T is provided by A = λ⊗m y, where λ = argmax|σZ(T )| and y is one of its
eigenvectors.
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As well, it is known that the best rank-one approximation of T is the solution of the variational equivalent to the
dual problem of maximizing

f(y) = Σi1,...,im=1,n Ti1...imyi1 . . . yim = 〈T,⊗my∗〉, for ||y||2 = 1,

equivalent to the maximization of the Rayleigh quotient

q(y) =
〈T,⊗my∗〉2

〈y, y〉m
=

f2(y)

||y||2m2
.

An important ingredient in constructing the solution to this problem is the H−spectral data (for n > 2), while the
case of n = 2 reduces to the classic matrix spectral framework.

3. Finsler and pseudo-Finsler structures

We shall further consider the Finslerian framework, which naturally extends the Riemannian one.

Definition 3.1. A real Finsler structure: a couple (M,F ), such that:
M is a real n-dimensional C∞ manifold; F : TM → [0,∞) is a mapping (Finsler fundamental function), which
satisfies:

1. F smooth on the slit tangent space T0M = {(x, y)|x ∈M,y ∈ TxM,y 6= 0} continuous on the null section;

2. F positive 1-homogeneous in y, i.e., F (x, λy) = λF (x, y),∀λ > 0;

3. F defines the smooth maps gij : TM \ {0} → R, i, j ∈ 1, n components of the metric Finsler tensor field

g = gijdx
i ⊗ dxj, which form a symmetric positive definite matrix, (gij)i,j∈1,n, gij = 1

2
∂2F 2

∂yi∂yj .

We shall also consider the pseudo-Finslerian extensions of this framework, in which F lacks the non-negativity
condition, is only positive-homogeneous, and g is only non-degenerate.

Examples.

• In medical image analysis (more specific, in Diffusion Tensor Imaging DTI), the Riemannian-type diffusion norm

F =
√
ytD−1y, ∀y ∈ TxR3,

(D being a 3 × 3 real matrix) was extended to the Finslerian (HARDI) model based on the spherical tensor [32]
D = {Di1...i6}, which builds the Finsler 6−th root norm

F (x, y) = (Di1...y6y
i1 . . . yi6)1/6, ∀y ∈ TxR6;

• The m-th root Grobner-type Finsler pseudo-norms [33], including Berwald-Moor, Chernov and Bogoslovski [14,
15, 16];

• Kropina α2

β , Matsumoto α2

α−β , and Randers α+ β (||β||α < 1);

• The Antonelli m−th root conformal-locally Minkowski norm [34], where σ = αix
i, αi ∈ R+, i = 1, n:

F (x, y) = eσ(x) m

√√√√ n∑
k=1

(yk)m,

• The Roxbourgh and Reza-Tavakol relativistic EPS-axioms satisfying Finsler norms (1992), including the pseudo-
norm modeling the light propagation (ε→ 0 leads to the classic locally Minkowski case) in R4:

F (x, y) =

(
(y1)2 −

[(y2)2 + (y3)2 + (y4)2]3

[ε(y1)2 + (y2)2 + (y3)2 + (y4)2]2

)1/2

.

3.1. Finslerian main symmetric tensors

Consider an n−dimensional pseudo-Finsler space (M,F ). The main symmetric tensors of this structure are:
the fundamental metric tensor g and the Cartan tensor C, having the components:

gij =
1

2

∂2F 2

∂yi∂yj
, Cijk =

1

4

∂3F 2

∂yi∂yj∂yk
, i, j, k ∈ 1, n,

which have the following notable properties:
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• the transvection property: Cijk(x, y)yk = 0; gij(x, y)yj = F ∂F
∂yi ;

• a Lagrange space (M,L) [12] becomes Finslerian iff Cijk is completely symmetric and satisfyes the transvection
property; in such a case, (M,F ) with L = F 2 is a Finsler sructure;

• a Finsler space (M,F ) becomes Riemannian (pseudo-Finsler  pseudo-Riemannian) iff Cijk ≡ 0; in such a
case, we have the structure (M, g), with g = 1

2Hessy(F 2) being y−independent.

Regarding the Candecomp decomposition, we have the following straightforward results

Proposition 3.2. a) For the (0,2) Finslerian metric tensor T = g considered at a fixed flagpole, the Candecomp
decomposition becomes the adjusted SV D decomposition of [g], directly inferred from the diagonalization via an
orthonormal basis. The squares of the singular values are exactly the eigenvalues of the k−modes (de Lathauwer or
Kiers).

b) For the (0, 3) Cartan tensor T = C, the Candecomp decomposition has the form:

T =

R∑
r=1

λrar ⊗ br ⊗ cr,

with
A = [a1, . . . ,aN ], B = [b1, . . . ,bN ], C = [c1, . . . , cN ],

and λ ∈ R, r ∈ 1, R, where R is the rank of T [3, 4]. The sum in b) can be truncated to the term corresponding
to the λ∗ ∈ σZ which has maximal absolute value and y its corresponding Z−eigenvector, one gets the Candecomp
approximation

T ≈ λ∗ ⊗N y = λ∗y ⊗ y ⊗ y.

3.2. Spectral data

Consider a (pseudo-)Finsler space (M,F ), and a given flag (x, y∗), which fixes the components of the Finsler
tensor fields. In particular, for the metric and the Cartan tensors, we have the spectral Z− and E−equations for
the metric tensor of the space of the form

gijf
j = λf i, i ∈ 1, n, and Cijkf

jfk = λf i, i ∈ 1, n, with ||f ||2 = 1.

Let T = T = (x, y)i1...imdx
i1 ⊗ . . .⊗ dxim ∈ T 0

m(M) be an m-covariant symmetric homogeneous Finsler tensor with
fixed flag (x, y). Denote by htT the tensor with homothetic flag (htT )(x, y) = T (x, ty). Then, regarding to the
behavior of spectra w.r.t. the flag homothety, and of eigenvalues under symmetry, we have:

Theorem 3.3. a) For the metric tensor g, for all cases Z/E/H/N ,

σ(htg) = σ(g), ∀t ∈ D;

b) For the Cartan tensor C, for all cases Z/E/H/N ,

σ(htC) = h1/t · σ(C), ∀t ∈ D,

where D =

{
R∗ for F homogeneous

R∗+, for F positive homogeneous.

We shall further provide an analysis for two Finsler structures, which appear in modeling the behavior of Langmuir
monolayers under pressure; another, corresponding to the expectance in the evolution of an oncologic process after
significant changes in the parameters.

4. The Langmuir-Finsler spectral data

Finsler geometry provides relevant geometric objects for the Physics of monolayers (e.g., [28, 29]). Far from
the equilibrium state of a compressed monolayer there appears a phase foliation at which an interface boundary
consists of domains of subphase surface, the Langmuir-Blodgett monolayer, and the Langmuir monolayer. We
represent in Fig.1(a) the Langmuir monolayer and the double charged layer during the compression process. The
three-dimensional globe conformation of the hydrophobic tails on the subphase surface is represented in Fig 1(b).
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(a) The Langmuir-Blodgett monolayer formation (b) The subphase space.

Figure 1: First-order phase transition in Langmuir-Blodgett monolayers.

Under certain conditions, the behavior of the interface boundary of the monolayer is governed by the Finsler
norm:

F 2 = A
ξ̇3

ṙ
+Bξ̇2 − C (ṙ2 + r2φ̇2)

2c2
,

where the parameters A, B, C are given by:

A = p |V | r5e
2|V |t
r ,

B = mc2 − p
((
− 4

3
r5 + 16

15
(|V |t)r4 + 1

30
(|V |t)2r3 + 1

45
(|V |t)3r2

+ 1
45

(|V |t)4r + 2
45

(|V |t)5
)
e

2|V |t
r − 4

45
(|V |t)6
r

Ei
[
2|V |t
r

])
,

C = mc2,

where V is the compression speed, Ei
[
2|V |t
r

]
is the exponential integral, m is the molecular mass and c is he speed of light.

Also, r and φ are the first two components of the cylindric orthogonal coordinate system (r, φ, z), in which the spherically-

symmetric monolayer is displaced in the plane xy (z = 0) and the center is located at the origin of coordinates. As
admissible experimental values for the parameters we have:

p ∈ {1, 10}, V ∈ {0, 10−15, 10−5, 10−3, 0.05, 1, 10, 500}, ρ0 = 0,

q ∈ {−0.1, 0, 0.1, 0.29}, R0 = 0.36, ε = 81, ε0 = 0.885 · 10−11,

m = 47 · 10−26, c = 3 · 108, t0 = 0.01, v = 0.05 and r0 ∈ [0, 0.36].

Regarding the spectra of the Blodgett-Finsler pseudo-metric and of the Cartan tensor, we have the following

Theorem 4.1. a) For Z/E with m even, if y ∈ Sλ (λ ∈ σ), then −y ∈ Sλ;

b) For Z/E with m odd, if y ∈ Sλ (λ ∈ σ), then −λ ∈ σ and −y ∈ S−λ;

c) For H/N , if y ∈ Sλ (λ ∈ σ), then ∀t ∈ K, ty ∈ Sλ, where K ∈ {R,C}, respectively.

The metric tensor of the LF structure has the attached matrix:

[g] =


3A y1

y2
+B − 3

2A
(y1)2

(y2)2
0

− 3
2A

(y1)2

(y2)2
A

(y1)3

(y2)3
− 1

2C 0

0 0 − 1
2C(x2)2

 ,

with (x1, x2, x3) = (ξ, r, φ) and (y1, y2, y3) = (ξ̇, ṙ, φ̇).

As for the Candecomp and HO-SVD decompositions, we have the following results:

We shall further assume that the supporting element (x, y∗) ∈ T̃M is fixed.

I. The metric tensor.

We note that the matrix [g] is symmetric, and for experimentally admissible values of A,B,C, it is non-definite,
non-degenerate, of signature (+,+,−). Since the metric tensor g is of second order, the CP and HO − SV D
decompositions coincide, and are practically provided by the usual SV D decomposition. The CP approximation is
given by the eigendata of the maximal positive eigenvalue of [g]. The matrix [g] admits the real eigenvalues

σ([g]) =

{
λ1 =

L+
√
R

4(y2)3
, λ2 =

L−
√
R

4(y2)3
, λ3 = −1

2
C(x2)2

}
,

157



V. Balan, AUT J. Math. Comput., 2(2) (2021) 153-163, DOI:10.22060/ajmc.2021.20213.1059

where
L = −C(y2)3 + 2A(y1)3 + 6(y2)2A(y1) + 2(y2)3B

R = C2(y2)6 − 4A(y1)3C(y2)3 + 12(y2)5A(y1)C + 4(y2)6BC+

+4A2(y1)6 + 12(y2)2A2(y1)4 − 8(y2)3BA(y1)3+

+36(y2)4A2(y1)2 + 24(y2)5A(y1)B + 4(y2)6B2,

and three associated generating column eigenvectors

Θ = [v1; v2; v3] =


3A(y1)2

−2(y2)

(
L+
√
R

4(y2)2
+3A(y1)+B(y2)

) 3A(y1)2

−2(y2)

(
L−
√
R

4(y2)2
+3A(y1)+B(y2)

) 0

1 1 0

0 0 1


Then, for D = diag(λ1, λ2, λ3), E = [ v1

||v1|| ,
v2
||v2|| ,

v3
||v3|| ] = [w1, w2, w3], we have D = Et[g]E, and infer the Candecomp

decomposition by diagonalization relative to the orthonormal basis:

[g] = EDEt =
∑
i=1,3

λiwi · wti .

By denoting the eigenvalue of maximal absolute value by λ∗ and the associated unit eigenvector by w∗, the best
rank-one approximation of [g] is [g] ∼ A = λ∗w∗ · wt∗.
With the same notations, the HO-SV D of [g] is practically SV D, given by

[g] = [sign(λ1)w1, sign(λ2)w2, sign(λ3)w3] · diag(|λ1|, |λ2|, |λ3|) · [w1, w2, w3]t

=
∑
i=1,3

|λi| · (sign(λi)wi) · wti .

II. The Cartan tensor. The Cartan tensor, considered at the fixed supporting element (x, y∗) ∈ T̃M

C = Cijk(x, y∗)dx
i ⊗ dxj ⊗ dxk, Cijk(x, y) =

1

4

∂3F 2

∂yi∂yj∂yk
,

is a third-order covariant tensor, with its first-index slices given by

C = {( (C1ij=γ·M, C2ij=ν·M, C3ij=O3×3 )} , where γ =
3A

β3
, ν = −α

β
γ,

where y∗ = (α, β, γ) is the flag vector of the supporting element, and M =

(
β2 −αβ 0

−αβ α2 0
0 0 0

)
. We note that C has only

8 nontrivial coefficients.

The Z/E-eigendata of the Cartan tensor are given by the eigensystem:

Ckijz
izj = λzk, k ∈ 1, 3,

∑
i=1,3

(zi)2 = 1,

which lead to

Sλ1=0 =

{
1√

α2 + β2 + t2
(α, β, t)

∣∣∣∣∣ t ∈ R

}
, S

λ2=
9A2

β8
√
α4+β4

=

{
±1√
α4 + β4

(β2, α2, 0)

}
.

and which infer the twofold Candecomp approximation:

C ∼ A = λ2 · v± ⊗ v± ⊗ v±, v± ∈ Sλ2
.

As well, the H/N -homogeneous eigensystem

Ckijz
izj = λ(zk)2, k ∈ 1, 3

provides the H/N -eigendata:

Sλ1=0 =

{
1√

α2 + β2 + t2
(α, β, t)

∣∣∣∣∣ t ∈ R

}
, S

λ2=
9A2(β2−α2)2

β8

=

{
±

(
β√

α2 + β2
,

−α√
α2 + β2

, 0

)}
.
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For the HO-SV D decomposition of the Cartan tensor C, the de Lathauwer or Kiers matrix [3] matricization
unfolding provides the three k−modes {M1,M2,M3} ∈ M3×9(R), which produce the singular values as square
roots of the eigenvalues of Ni = Mi ·M t

i , i ∈ 1, 3:

σsing = {λsing∗ = (α2 + β2)
√
γ2 + ν2, 0, 0 },

and the corresponding HO-SVD orthogonal matrices

U =

(
γ/
√
γ2+ν2 −ν/

√
γ2+ν2 0

ν/
√
γ2+ν2 γ/

√
γ2+ν2 0

0 0 1

)
, V =

(
−β/
√
α2+β2 α/

√
α2+β2 0

α/
√
α2+β2 β/

√
α2+β2 0

0 0 1

)
= W,

with the columns conveniently permuted to satisfy the generalized core tensor slice orthonormality condition for
the core tensor S; these lead to the HO-SVD for the Cartan tensor C:

CijkU
i
pV

j
qW

k
r = Spqr ⇔ Cijk = Spqr(U

t)pi (V
t)qj(W

t)rk,

with the core tensor S almost zero (except S111 = S222 = λsing∗).

5. The Garner-Randers spectral data

In Oncology, the Garner-Randers structure provides information on the ratio of malignant/quiescent cells as-
suming that certain treatment conditions are fulfilled. The Garner model is described by the dynamical system

d
dtx

1 = x1 − x1(x1 − x2) + hx1x2

1+k(x1)2

d
dtx

2 = −rx2 + ax1(x1 − x2)− hx1x2

1+k(x1)2 ,

• x, proliferating (malignant) cells, scaled;

• y, quiescent cells, scaled;

• a, which measures the relative nutrient uptake by resting vs. proliferating cancerous cells;

• r = d/b, the ratio between the death rate of quiescent cells and the birth rate of proliferating cells;

• h, growth factor that preferentially shifts cells from quiescent to proliferating state; it is inversely proportional to a;

• k, mild moderating factor.

For the experimental data

a = 1.998958904, r = 0.03, h = 1.236, k = 0.236,
and with LSM accuracy, we obtain the statistically fit local Garner-Randers Finsler estimate [30, 31]:

F (x, y) = α+ β ≡
√
gij(x)yiyj + bi(x)yi =

√
(y1)2 + (y2)2 + 0.63y1 − 0.27y2,

where α is a y∗-dependent Riemannian norm and β is its linear deformation. The main multilinear symmetric
tensors on {(x, y∗)} × Tx(M) are:

• the fundamental metric tensor g(y∗) ≡ (gij(y))2x2|y=y∗

g11 =
1.26(y1)3+1.89y1(y2)2+1.397

√
(y1)2+(y2)2((y1)2+(y2)2)−0.27(y2)3

((y1)2+(y2)2)3/2

g12 =
0.63(y2)3−0.27(y1)3−0.17

√
(y1)2+(y2)2((y1)2+(y2)2)

((y1)2+(y2)2)3/2

g22 =
0.63(y1)3−0.81(y1)2y1+1.073

√
(y1)2+(y2)2((y1)2+(y2)2)−0.54(y2)3

((y1)2+(y2)2)3/2

• the Cartan tensor C(y∗) ≡ (Cijk(y∗))2x2x2|y=y∗

C111 = 0.135(y2)3(7y2+3y1)

((y1)2+(y2)2)−5/2 , C112 = −0.135(y2)2y1(7y2+3y1)

((y1)2+(y2)2)−5/2 ,

C122 = 0.135(y1)2y2(7y2+3y1)

((y1)2+(y2)2)−5/2 , C222 = −0.135(y1)3(7y2+3y1)

((y1)2+(y2)2)−5/2 .

The Z-eigendata are (λ, z) where z = (z1, z2) are provided by the following eigensystems:
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• for the Euclidean/Kronecker spectral framework with σZδ = {0, 0, λd,−λd},

Cijkδ
iazjzk = λza, a = 1, 2; gijz

izj = 1;

• For the extended fixed-flag metric framework with σZg = {0, 0, λg,−λg},

Cijkz
jzk = λgiaz

a, i = 1, 2. gjkz
jzk = 1.

We note that 0 is a Z-eigenvalue with multiplicity 2, and that (λ, z) is an eigenpair iff (−λ,−z) is an eigenpair as
well. In order to provide relevant numeric solutions for the Cartan Z-eigenproblem, we fix the following eigendata
details: the flagpoles are unit subsequent vectors lying on the indicatrix (displaced via ”indicatrix harmonics”):

(y1, y2) =
1

‖(cos θ, sin θ)‖g
· (cos θ, sin θ),

for N = 64, θ = h 2π
N , h = 1, N . The Garner-Randers indicatrix is harmonically digitized by using g-unit flagpoles

- see Fig. 2(a). The Z-eigensystem can be tracted by Maple PolynomialSolve or Matlab providing the eigenpairs
with h-dependent accuracy:

(λ(y1, y2) z = z1(y1, y2), z2(y1, y2)),

and the Zδ-eigendata for the nontrivial flag-dependent eigenvalues are represented in Fig. 2(b).

(a) Harmonic sampling of the indicatrix
(b) Zδ-eigendata

Figure 2: Harmonic sampling of the indicatrix and Zδ-eigendata

As well, the Zg-eigendata for the nontrivial eigenvalues can be depicted as follows:

Figure 3: In this case, there exist non-real solutions of the Z-eigenproblem. For a whole flagpole subdomain, the
eigenvalues are purely imaginary; their modules are plotted by the dark curve.

6. The Finslerian metric extension

We shall further describe the case of constructing the coordinate-independent formulation of the extended
eigenproblem. For the beginning, the particular Riemannian Z/E frameworks can be developed as follows. Let
A = (Ai i2···im) be an m-th order tensor, covariant and symmetric, and let g be a Riemannian metric on M .
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Z/E H/N{
Aii2···imv

i2 · · · vim = λvi

vT v = 1 Aii2···imv
i2 · · · vim = λ(vi)m−1

wrt δ

{
Aii2···imδ

iavi2 · · · vim = λva

‖v‖g = 1 Aii2···imδ
iavi2 · · · vim = λ(va)m−1

wrt g

{
Aii2···img

iavi2 · · · vim = λva

‖v‖g = `, ` ∈ R Aii2···img
iavi2 · · · vim = λ(va)m−1

We note that the advantage of the g-left extension is its being coordinate-free, while the right extension exhibits
homogeneity. As well, for m = 2, the extensions reduce to the classical matrix eigensystem.

As for the proper Finslerian invariant case, we have the following results:

Theorem 6.1. a) For T ∈ Γ(T̃M ×M T 1
2k) (k ≥ 1), the Z−spectral equation admits the following invariant

extension:
ι2kC T = λC · (ι2Cg)k,

where C = yi ∂
∂yi is the Liouville vector field.

b) For T ∈ Γ(T̃M ×M T 1
2k−1) (k ≥ 1), the Z−spectral equation admits the following invariant extension:

ι2k−1C T = λC.

Corollary 6.2. For T ∈ Γ(T̃M ×M T 0
2k+1) (k ≥ 1), the Z−spectral equation admits the following invariant exten-

sion:
ι2kC T = λιCg · (ι2Cg)k.

In particular, for the Cartan tensor, in the metric-extended σg case, we infer the following

Corollary 6.3. a) Let T = C ∈ Γ(T̃M ×M T 0
3 ), be the Cartan tensor considered at an arbitrary fixed flagpole

(x, y∗) ∈M × TxM . Then the local extended Z−spectral equation becomes

Cijk(x, y∗)y
jyk = λgijy

j , ||y||g = a. (∗)

b) For g = δ and a = 1, (*) leads to the classic eigenvalue problem for C.

c) For y∗ = y, (*) provides a trivial l.h.s. of the Z−spectral equation, with unique Z−eigenvalue λ = 0 and
Z−eigenspace given by:

(i) the scaled proper Finslerian indicatrix (for a > 0);

(ii) the set of isotropic vectors of the Finsler pseudo-norm (for a = 0), and

(iii) the negative scaled Lagrangian indicatrix (for a < 0).

As well, for the metric-extended even-tensor we generally have

Corollary 6.4. a) For T ∈ Γ(T̃M ×M T 0
2k) (k ≥ 1), the Z−spectral equation admits the following invariant

extension:
ι2k−1C T = λιCg, ||C||g = a, a ∈ R.

b) In the particular case when T = g̃ ∈ Γ(T̃M ×M T 0
2 ) is a Finslerian metric tensor at the fixed flagpole (x, y∗) ∈

M × TxM , for g = δ and a = 1, the Z−spectral equation from above leads to the classic eigenvalue problem for g̃,

g̃ijy
j = λyi, ||y||2 = 1.

We should note that, among the applicative fields of the Z−eigendata theory, one can mention: tensor data
analysis; higher-order statistics; computer tomography and M.R.I. data processing; multispectral image restoration
and compression; signal processing, separation and denoising, etc.

As well, works have been recently addressing open problems, like: the usage of resolvent advances on proper
identifying the spectra; optimizing the decomposition for speed and storage data; specializing the spectral algorithms
for Big Data within neuro-fuzzy systems for pattern recognition.
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