

AUT Journal of Mathematics and Computing

A note on the Yamabe problem of Randers metrics

Bin Chen ${ }^{*}$, Siwei Liu ${ }^{\text {a }}$
${ }^{a}$ School of Mathematical Sciences, Tongji University, Shanghai, China, 200092

Abstract

The classical Yamabe problem in Riemannian geometry states that every conformal class contains a metric with constant scalar curvature. In Finsler geometry, the C-convexity is needed in general. In this paper, we study the strong C-convexity of Randers metrics, and provide a result on the Yamabe problem for the metrics of Randers type.

Review History:

Received:23 June 2021
Accepted:24 July 2021
Available Online:01 September 2021

Keywords:

Randers metrics
C-convex
Yamabe problem

AMS Subject Classifi-
cation (2010):
53C60; 58B20
(Dedicated to Professor Zhongmin Shen for his warm friendship and research collaboration)

1. Introduction

H. Yamabe attempted to seek Riemannian metrics with constant scalar curvature in a conformal class in [11]. A bundle of works of N. Trudinger [10], T. Aubin [1] and R. Schoen [9] gives an affirmative answer to the Yamabe Problem, which is a milestone in Riemannian geometry. In Finsler realm, X. Cheng and M. Yuan [4] studied the Yamabe problem for the scalar curvature defined by H. Akbar-Zadeh, and obtained a negative answer for Randers metrics. In the view of calculus of variations, L. Zhao and the first author defined a Finsler scalar curvature $\operatorname{Scal}(x)$ and proved that a Finsler metric with constant scalar curvature is a critical point of the total scalar curvature functional

$$
\mathcal{S}(F)=\frac{1}{\operatorname{Vol}(M)^{1-\frac{2}{n}}} \int_{M} \operatorname{Scal}(x) d \mu_{F}
$$

in its conformal class $([5])$. The Yamabe invariant is defined as $Y(M, F)=\inf _{u} \mathcal{S}\left(e^{u(x)} F\right)$. In order to have a lower bound of \mathcal{S} in the conformal class $[F]$ of the metric F, the condition C-convex is introduced in [5] which is conformally invariant. By introducing another conformal invariant $C(M, F)$, L. Zhao and the first author partially solved the Yamabe problem in Finsler geometry.

Theorem $1.1([5])$. Let $\left(M^{n}, F\right)$ be a compact C-convex Finsler manifold with $n \geq 3$. If $Y(M, F) C(M, F)<$ $Y\left(\mathbb{S}^{n}\right)$, then there exists a metric \bar{F} conformal to F such that $\operatorname{Scal}_{\bar{F}}(x)=Y(M, \bar{F})$.

[^0]In [6], L. Zhao and the first author introduce the notion of strongly C-convexity (see (2.1) in $\S 2$) which is a bit more stronger than C-convexity. In this paper, we shall study the strong C-convexity of Randers metrics and obtain the following result.

Theorem 1.2. A Randers metric $\alpha+\beta$ is strongly C-convex if and only if

$$
\|\beta\|_{\alpha}<B_{n}:=\left(1-\left(\frac{8 n^{3}-16 n^{2}+8 n+2}{n^{4}+3 n^{3}-9 n^{2}+7 n}\right)^{2}\right)^{1 / 2}
$$

where the dimension $n \geq 3$.
As a conclusion, we can give a statement to the Yamabe Problem of Randers metrics.
Corollary 1.3. Let $F=\alpha+\beta$ be a Randers metric on a compact manifold M^{n} with $n \geq 3$. If $\|\beta\|_{\alpha}<B_{n}$ and $Y(M, F) C(M, F)<Y\left(\mathbb{S}^{n}\right)$, then there exists a metric \bar{F} conformal to F such that $\operatorname{Scal}_{\bar{F}}(x)=Y(M, \bar{F})$.

The contents of this paper are arranged as follows. In $\S 2$, we give a brief review of Finsler metrics and give the precise definition of strongly C-convex. In $\S 3$, we study the strongly C-convexity of Randers metrics. Throughout this paper, we always assume that the dimension $n \geq 3$.

2. Finsler metrics

Let M be an n-dimensional differentiable manifold with $n \geq 3$. The points in the tangent bundle $T M$ are denoted by (x, y), where $x \in M$ and $y \in T_{x} M$. Let $\left(x^{i} ; y^{i}\right)$ be the local coordinates of $T M$ with $y=y^{i} \partial / \partial x^{i}$.

Let $F: T M \rightarrow[0,+\infty)$ be a Finsler metric on M. The fundamental form of F is

$$
g=g_{i k}(x, y) d x^{i} \otimes d x^{k}, \quad g_{i k}:=\left[\frac{1}{2} F^{2}\right]_{y^{i} y^{k}}
$$

Here and from now on, the lower index x^{i}, y^{i} always means partial derivatives, such as $F_{y^{i}}:=\frac{\partial F}{\partial y^{i}}, F_{x^{i}}:=\frac{\partial F}{\partial x^{i}}$, $\left[F^{2}\right]_{y^{i} y^{k}}:=\frac{\partial^{2} F^{2}}{\partial y^{i} \partial y^{k}}$, and etc.

The canonical projection $\pi: T M \backslash\{0\} \rightarrow M$ gives rise to a covector bundle $\pi^{*} T^{*} M$, on which there exists the Hilbert form $\omega=\ell_{i} d x^{i}$ where $\ell_{i}=F_{y^{i}}$, whose dual is the distinguished section of $\pi^{*} T M$

$$
\ell=\ell^{i} \frac{\partial}{\partial x^{i}}, \quad \text { with } \quad \ell^{i}:=\frac{y^{i}}{F}
$$

The Cartan tensor (Cartan torsion) and the Cartan form are respectively

$$
\begin{gathered}
A=A_{i j k} d x^{i} \otimes d x^{j} \otimes d x^{k}, \quad A_{i j k}:=\frac{F}{4}\left[F^{2}\right]_{y^{i} y^{j} y^{k}} \\
I=I_{i} d x^{i}, \quad I_{i}:=A_{i j k} g^{j k}, \quad\left(g^{j k}\right)=\left(g_{j k}\right)^{-1}
\end{gathered}
$$

The spray coefficients are given as

$$
G^{i}=\frac{1}{4} g^{i l}\left\{\left[F^{2}\right]_{x^{k} y^{l}} y^{k}-\left[F^{2}\right]_{x^{l}}\right\}
$$

which determine the Berwald connection coefficients in the following way

$$
\Gamma_{j k}^{i}=G_{y^{j} y^{k}}^{i}
$$

The flag curvature tensor (Riemann curvature tensor) is given by

$$
R_{k}^{i}=2 G_{x^{k}}^{i}-G_{x^{j} y^{k}}^{i} y^{j}+2 G^{j} G_{y^{j} y^{k}}^{i}-G_{y^{j}}^{i} G_{y^{k}}^{j},
$$

while the Ricci curvature is defined as the trace

$$
\operatorname{Ric}(x, y):=\frac{1}{F^{2}} R_{i}^{i}
$$

The most important non-Riemannian curvature in Finsler geometry is the Landsberg curvature, which is defined as the derivative of the Cartan torsion

$$
L_{i j k}:=A_{i j k: m} \ell^{m}
$$

where ":" is the horizontal covariant derivative with respect to the Berwald connection. The mean Landsberg tensor is

$$
J=J_{k} d x^{k}, \quad J_{k}:=g^{i j} L_{i j k}
$$

On the punctured bundle $T M \backslash\{0\}$, there is the Sasaki type metric $g_{i k} d x^{i} \otimes d x^{k}+g_{i k} \frac{\delta y^{i}}{F} \otimes \frac{\delta y^{k}}{F}$, which induces a Riemannian metric on the projective sphere bundle $S M$

$$
\hat{g}=g_{i k} d x^{i} \otimes d x^{k}+F[F]_{y^{i} y^{k}} \frac{\delta y^{i}}{F} \otimes \frac{\delta y^{k}}{F}
$$

Hence the volume form of $S M$ can be expressed as [3, 7]

$$
d \mu_{S M}=\Omega d \eta \wedge d x, \quad \Omega:=\operatorname{det}\left(\frac{g_{i k}}{F}\right)
$$

where

$$
d \eta:=\sum(-1)^{i-1} y^{i} d y^{1} \wedge \cdots \wedge \widehat{d y^{i}} \wedge \cdots \wedge d y^{n}, \quad d x:=d x^{1} \wedge \cdots \wedge d x^{n}
$$

The volume form of M induced by $S M$ can be defined by

$$
d \mu_{F}=\sigma_{F}(x) d x, \quad \sigma_{F}(x):=\frac{1}{\omega_{n-1}} \int_{S_{x} M} \Omega d \eta,
$$

where ω_{n-1} is the volume of the $(n-1)$-dimensional standard sphere.
By integrating along the fibre, the scalar curvature can be defined as

$$
\operatorname{Scal}(x)=\frac{n \int_{S_{x} M} R i c \cdot \Omega d \eta}{\int_{S_{x} M} \Omega d \eta}+\frac{2 n}{n-2} \frac{\int_{S_{x} M} g^{i j} J_{i: j} \cdot \Omega d \eta}{\int_{S_{x} M} \Omega d \eta}
$$

as the dimension $n \geq 3$. In order to obtain the existence of Finsler metrics with constant scalar curvature $\operatorname{Scal}(x)$, the concept of C-convexity is introduced in [5]. Precisely, a Finsler metric is strongly C-convex if the tensor

$$
\begin{equation*}
\mathfrak{C}^{i j}=g^{i j}-\frac{n}{(n-1)(n-2)}\left(\ell^{i} I^{j}+\ell^{j} I^{i}+A_{s}^{i r} A_{r}^{j s}\right) \tag{2.1}
\end{equation*}
$$

is positive definite, while C-convexity means the positivity of the tensor

$$
c^{i j}=\frac{1}{\int_{S_{x} M} \Omega d \eta} \int_{S_{x} M} \mathfrak{C}^{i j} \cdot \Omega d \eta
$$

We shall point out that the C-convexity does not make sense as $n=2$.
One can find that a metric is strongly C-convex if its Cartan torsion is sufficiently small. In the next section, we shall study the stongly C-convexity of Randers metrics and obtain Theorem 1.2.

3. Strongly C-convexity of Randers Metrics

Let $F=\alpha+\beta$ be a Randers metric where $\alpha=\sqrt{a_{i j} y^{i} y^{j}}$ and $\beta=b_{i} y^{i}$ with $b=\sqrt{a^{i j} b_{i} b_{j}}<1$ and $\left(a^{i j}\right)=\left(a_{k l}\right)^{-1}$. In this section, we shall investigate the positivity of ($\mathfrak{C}^{i j}$) of $F=\alpha+\beta$.

It is well-known that the Cartan tensor of a Randers metric is reducible

$$
A_{i j k}=\frac{1}{n+1}\left\{I_{i} h_{i k}+I_{j} h_{i k}+I_{k} h_{i j}\right\}
$$

where $h_{i j}:=F F_{y^{i} y^{j}}=g_{i j}-\ell_{i} \ell_{j}$ is the angular tensor, and the Cantan form is

$$
I_{i}=\frac{n+1}{2}\left(b_{i}-\frac{\beta}{\alpha} \alpha_{y^{i}}\right) .
$$

Being aware of $h_{s}^{r} h_{r}^{s}=n-1$ and $h_{s}^{i} h^{j s}=g^{i j}-\ell^{i} \ell^{j}$, one can get

$$
A_{s}^{i r} A_{r}^{j s}=\frac{1}{(n+1)^{2}}\left\{2\|I\|^{2} g^{i j}+(n+5) I^{i} I^{j}-2\|I\|^{2} \ell^{i} \ell^{j}\right\}
$$

where

$$
\begin{equation*}
\|I\|^{2}=I_{i} I_{j} g^{i j}=\frac{(n+1)^{2}}{4} \cdot \frac{b^{2}-(\beta / \alpha)^{2}}{1+(\beta / \alpha)} \leq \frac{(n+1)^{2}}{2}\left(1-\sqrt{1-b^{2}}\right) \tag{3.1}
\end{equation*}
$$

which can be found in [8]. Thus, we reach

$$
\begin{aligned}
\mathfrak{C}^{i j}= & \left(1-2\|I\|^{2} \frac{n}{(n+1)^{2}(n-1)(n-2)}\right) g^{i j} \\
& -\frac{n}{(n-1)(n-2)}\left(\ell^{i} I^{j}+\ell^{j} I^{i}+\frac{n+5}{(n+1)^{2}} I^{i} I^{j}-\frac{2\|I\|^{2}}{(n+1)^{2}} \ell^{i} \ell^{j}\right) .
\end{aligned}
$$

For investigating the positivity, one can apply the continuity method. Let us consider the family $F_{t}=\alpha+t \beta$ where $t \in[0,1]$. It is clear that $\left(\mathfrak{C}^{i j}\right)$ of F_{0} is $\left(a^{i j}\right)$ which is positive definite. Hence, once we obtain the invertibility of $\left(\mathfrak{C}^{i j}\right)$ for every F_{t}, we shall have the positivity of $\left(\mathfrak{C}^{i j}\right)$ for every F_{t}. Thus we shall calculate the determinant $\operatorname{det}\left(\mathfrak{C}^{i j}\right)$ by applying the following lemma.

Lemma 3.1 ([2]). Let $H=\left(H^{i j}\right)$ be a symmetric $n \times n$ matrix and $V=\left(V^{i}\right)$ be an n-vector. Put $G^{i j}=$ $H^{i j}+\delta V^{i} V^{j}$ where δ is a complex number. Assuming that H is invertible with $H^{-1}=\left(H_{i j}\right)$, it holds

$$
\operatorname{det}\left(G^{i j}\right)=(1+\delta v) \operatorname{det}\left(H^{i j}\right)
$$

where $v=V_{i} V^{i}$ and $V_{i}=H_{i j} V^{j}$. Moreover, if $1+\delta v \neq 0, G$ is invertible and the inverse $G^{-1}=\left(G_{i j}\right)$ is given by

$$
G_{i j}=H_{i j}-\frac{\delta V_{i} V_{j}}{1+\delta v}
$$

In order to apply the above lemma, we rewrite $\mathfrak{C}^{i j}$ in the following form

$$
\begin{equation*}
\mathfrak{C}^{i j}=\rho_{0} g^{i j}+\rho_{1} \ell^{i} \ell^{j}-\rho_{2}\left(I^{i}+\frac{(n+1)^{2}}{n+5} \ell^{i}\right)\left(I^{j}+\frac{(n+1)^{2}}{n+5} \ell^{j}\right) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\rho_{0} & =1-2\|I\|^{2} \frac{n}{(n+1)^{2}(n-1)(n-2)} \\
\rho_{1} & =\frac{n}{(n-1)(n-2)}\left(\frac{(n+1)^{2}}{n+5}+\frac{2\|I\|^{2}}{(n+1)^{2}}\right), \\
\rho_{2} & =\frac{n(n+5)}{(n+1)^{2}(n-1)(n-2)} .
\end{aligned}
$$

Lemma 3.2. The coefficient ρ_{0} is positive when $n \geq 4$. In dimension $n=3, \rho_{0}>0$ if and only if $b^{2}<\frac{8}{9}$.
Proof. By (3.1), we have $\|I\|^{2}<\frac{(n+1)^{2}}{2}$, thus for $n \geq 4$ we have

$$
\rho_{0}=1-2\|I\|^{2} \frac{n}{(n+1)^{2}(n-1)(n-2)}>1-\frac{n}{(n-1)(n-2)}>0 .
$$

For $n=3$, we use the estimate $\|I\|^{2} \leq \frac{(n+1)^{2}}{2}\left(1-\sqrt{1-b^{2}}\right)$ where the equality can be achieved. Thus $\rho_{0}>0$ if and only if

$$
\min _{y} \rho_{0}=1-\frac{3}{16} \max _{y}\|I\|^{2}=1-\frac{3}{2}\left(1-\sqrt{1-b^{2}}\right)>0
$$

which implies $b^{2}<\frac{8}{9}$.

In the remaining part of this section, we shall assume $\rho_{0}>0$. Therefore, by putting

$$
\widetilde{H}^{i j}=\rho_{0} g^{i j}+\rho_{1} \ell^{i} \ell^{j}=\rho_{0}\left(g^{i j}+\frac{\rho_{1}}{\rho_{0}} \ell^{i} \ell^{j}\right),
$$

and according to Lemma 3.1, we have

$$
\operatorname{det}\left(\widetilde{H}^{i j}\right)=\left(\rho_{0}\right)^{n} \operatorname{det}\left(g^{i j}\right)\left(1+\frac{\rho_{1}}{\rho_{0}}\right)
$$

One can easily find that $1+\frac{\rho_{2}}{\rho_{0}}>0$. Thus $\left(\widetilde{H}^{i j}\right)$ is invertible with the inverse

$$
\widetilde{H}_{i j}=\frac{1}{\rho_{0}} g_{i j}-\frac{\rho_{1}}{\left(\rho_{0}\right)^{2}} \frac{\ell_{i} \ell_{j}}{1+\frac{\rho_{1}}{\rho_{0}}} .
$$

Now, applying Lemma 3.1 to

$$
\mathfrak{C}^{i j}=\widetilde{H}^{i j}-\rho_{2}\left(I^{i}+\frac{(n+1)^{2}}{n+5} \ell^{i}\right)\left(I^{j}+\frac{(n+1)^{2}}{n+5} \ell^{j}\right),
$$

we obtain

$$
\begin{aligned}
& \operatorname{det}\left(\mathfrak{C}^{i j}\right)= \operatorname{det}\left(\widetilde{H}^{i j}\right)\left[1-\rho_{2} \widetilde{H}_{i j}\left(I^{i}+\frac{(n+1)^{2}}{n+5} \ell^{i}\right)\left(I^{j}+\frac{(n+1)^{2}}{n+5} \ell^{j}\right)\right] \\
&=\left(\rho_{0}\right)^{n} \operatorname{det}\left(g^{i j}\right)\left[1-\frac{\rho_{2}}{\rho_{0}}\|I\|^{2}-\frac{(n+1)^{4}}{(n+5)^{2}} \frac{\rho_{2}}{\rho_{0}+\rho_{1}}\right] \\
&=\left(\rho_{0}\right)^{n} \operatorname{det}\left(g^{i j}\right)\left[1-\frac{n(n+1)^{2}}{2 n^{3}+4 n^{2}-12 n+10}\right. \\
&\left.-\frac{n(n+5)\|I\|^{2}}{(n+1)^{2}(n-1)(n-2)-2 n\|I\|^{2}}\right] .
\end{aligned}
$$

Theorem 3.3. A Randers metric F is strongly C-convex if and only if

$$
b<B_{n}:=\left(1-\left(\frac{8 n^{3}-16 n^{2}+8 n+2}{n^{4}+3 n^{3}-9 n^{2}+7 n}\right)^{2}\right)^{1 / 2}
$$

where $b=\|\beta\|_{\alpha}$.
Proof. By the decomposition (3.2) and $n \geq 3$, the positivity of $\left(\mathfrak{C}^{i j}\right)$ shall imply $\rho_{0}>0$. In fact, since $n \geq 3$, by picking a covector $\left(V_{i}\right)$ such that

$$
\ell^{i} V_{i}=0, \quad\left(I^{i}+\frac{(n+1)^{2}}{n+5} \ell^{i}\right) V_{i}=0
$$

we have $\mathfrak{C}^{i j} V_{i} V_{j}=\rho_{0} g^{i j} V_{i} V_{j}$. Thus the positivity of ($\mathfrak{C}^{i j}$) does imply $\rho_{0}>0$. Hence, if F is strongly C-convex, we have $\rho_{0}>0$ and $\operatorname{det}\left(\mathfrak{C}^{i j}\right)>0$. Therefore, one shall get

$$
\begin{equation*}
1-\frac{n(n+1)^{2}}{2 n^{3}+4 n^{2}-12 n+10}-\frac{n(n+5)\|I\|^{2}}{(n+1)^{2}(n-1)(n-2)-2 n\|I\|^{2}}>0 \tag{3.3}
\end{equation*}
$$

The inequality (3.3) is equivalent to

$$
\|I\|^{2}<\frac{(n+1)^{2}(n-1)(n-2)(n(n-2)-1)}{2 n\left(n^{3}+3 n^{2}-9 n+7\right)}
$$

Since $\max _{y}\|I\|^{2}=\frac{(n+1)^{2}}{2}\left(1-\sqrt{1-b^{2}}\right)$, the above inequality holds if and only if

$$
\frac{(n+1)^{2}}{2}\left(1-\sqrt{1-b^{2}}\right)<\frac{(n+1)^{2}(n-1)(n-2)(n(n-2)-1)}{2 n\left(n^{3}+3 n^{2}-9 n+7\right)}
$$

from which we can get

$$
\begin{equation*}
b^{2}<1-\left(\frac{8 n^{3}-16 n^{2}+8 n+2}{n^{4}+3 n^{3}-9 n^{2}+7 n}\right)^{2} \tag{3.4}
\end{equation*}
$$

Conversely, let us assume that β satisfies (3.4). A simple calculation shows that $b^{2}<\frac{8}{9}$ as $n=3$. Hence, ρ_{0} is positive according to Lemma 3.2. Since (3.15) is equivalent to (3.18), we have $\operatorname{det}\left(\mathfrak{C}^{i j}\right)>0$ in this case. Now, put $F_{t}=\alpha+t \beta$ for $t \in[0,1]$, and denote $\mathfrak{C}^{i j}$ of F_{t} by $\mathfrak{C}^{i j}(t)$. It is clear that $t \beta$ also satisfies (3.18) since $\|t \beta\|_{\alpha} \leq\|\beta\|_{\alpha}$. Hence, for every $t \in[0,1]$ we have $\operatorname{det}\left(\mathfrak{C}^{i j}(t)\right)>0$ and thus the eigenvalues of $\mathfrak{C}^{i j}(t)$ are nonzero. Note that the eigenvalues of $\mathfrak{C}^{i j}(t)$ depend continuously on t, and $\mathfrak{C}^{\mathfrak{i j}}(0)=a^{i j}$ is positive definite. As t changes from 0 to 1 , none of these eigenvalues can become negative. Thus $\mathfrak{C}^{i j}$ is positive definite.

Remark. In order to have an intuition, we list below the decimal values of several B_{n} 's.

	$n=3$	$n=4$	$n=5$	$n=10$	$n=100$	$n=1000$
B_{n}	0.2773	0.4869	0.6098	0.8464	0.9971	0.9999

As n grows, the condition on β becomes weaker. While it is critical as the dimension is low.

References

[1] T. Aubin, Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296.
[2] D. Bao, S. -S. Chern and Z.Shen, An introduction to Riemann-Finsler geometry, Grad. Texts in Math. 200, Springer, New York, 2000.
[3] B. Chen and Y. Shen, On a class of critical Riemann-Finsler metrics, Publ. Math. Debrecen, 72/3-4 (2008), 451-468.
[4] X. Cheng and M. Yuan, On Randers metrics of isotropic scalar curvature, Publ. Math. Debrecen, 84/1-2 (2014), 63-74.
[5] B. Chen and L. Zhao, On a Yamabe type problem in Finsler geometry, Canad. Math. Bull. 60(2) (2017), 253-268.
[6] B. Chen and L. Zhao, Finsler conformal changes preserving the modified Ricci curvature, Tohoku Math. J., 73 (2021), 39-48.
[7] Q. He and Y. Shen, Some results on harmonic maps for Finsler manifolds, Inter. Jour. of Math., Vol.16, No.9(2005), 1017-1031.
[8] M. Ji and Z. Shen, On strongly convex graphs in Minkowski geometry, Canad. Math. Bull. 45(2) (2002), 232-246.
[9] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984), 479-495
[10] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), 265-274.
[11] H. Yamabe, On the deformation of Riemannian structures on compact manfolds, Osaka Math. Jour., 12 (1960), 21-37.

Please cite this article using:
Bin Chen, Siwei Liu, A note on the Yamabe problem of Randers metrics, AUT J. Math.
Comput., 2(2) (2021) 165-170
DOI: 10.22060/ajmc.2021.20199.1056

[^0]: *Corresponding author.
 E-mail addresses: chenbin@tongji.edu.cn, carrot98@163.com
 Supported by the National Natural Science Foundation of China (No. 11871126)

