

AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 2(2) (2021) 165-170 DOI: 10.22060/ajmc.2021.20199.1056

A note on the Yamabe problem of Randers metrics

Bin Chen^{*a}, Siwei Liu^a

^aSchool of Mathematical Sciences, Tongji University, Shanghai, China, 200092

ABSTRACT: The classical Yamabe problem in Riemannian geometry states that every conformal class contains a metric with constant scalar curvature. In Finsler geometry, the C-convexity is needed in general. In this paper, we study the strong C-convexity of Randers metrics, and provide a result on the Yamabe problem for the metrics of Randers type.

Review History:

Received:23 June 2021 Accepted:24 July 2021 Available Online:01 September 2021

Keywords:

Randers metrics C-convex Yamabe problem

AMS Subject Classification (2010):

53C60; 58B20

(Dedicated to Professor Zhongmin Shen for his warm friendship and research collaboration)

1. Introduction

H. Yamabe attempted to seek Riemannian metrics with constant scalar curvature in a conformal class in [11]. A bundle of works of N. Trudinger [10], T. Aubin [1] and R. Schoen [9] gives an affirmative answer to the Yamabe Problem, which is a milestone in Riemannian geometry. In Finsler realm, X. Cheng and M. Yuan [4] studied the Yamabe problem for the scalar curvature defined by H. Akbar-Zadeh, and obtained a negative answer for Randers metrics. In the view of calculus of variations, L. Zhao and the first author defined a Finsler scalar curvature Scal(x) and proved that a Finsler metric with constant scalar curvature is a critical point of the total scalar curvature functional

 $S(F) = \frac{1}{\operatorname{Vol}(M)^{1-\frac{2}{n}}} \int_{M} \operatorname{Scal}(x) \, d\mu_{F}$

in its conformal class([5]). The Yamabe invariant is defined as $Y(M, F) = \inf_u \mathcal{S}(e^{u(x)}F)$. In order to have a lower bound of \mathcal{S} in the conformal class [F] of the metric F, the condition C-convex is introduced in [5] which is conformally invariant. By introducing another conformal invariant C(M, F), L. Zhao and the first author partially solved the Yamabe problem in Finsler geometry.

Theorem 1.1 ([5]). Let (M^n, F) be a compact C-convex Finsler manifold with $n \geq 3$. If $Y(M, F)C(M, F) < Y(\mathbb{S}^n)$, then there exists a metric \bar{F} conformal to F such that $\operatorname{Scal}_{\bar{F}}(x) = Y(M, \bar{F})$.

^{*}Corresponding author.

In [6], L. Zhao and the first author introduce the notion of *strongly C-convexity* (see (2.1) in §2) which is a bit more stronger than C-convexity. In this paper, we shall study the strong C-convexity of Randers metrics and obtain the following result.

Theorem 1.2. A Randers metric $\alpha + \beta$ is strongly C-convex if and only if

$$\|\beta\|_{\alpha} < B_n := \left(1 - \left(\frac{8n^3 - 16n^2 + 8n + 2}{n^4 + 3n^3 - 9n^2 + 7n}\right)^2\right)^{1/2}.$$

where the dimension $n \geq 3$.

As a conclusion, we can give a statement to the Yamabe Problem of Randers metrics.

Corollary 1.3. Let $F = \alpha + \beta$ be a Randers metric on a compact manifold M^n with $n \geq 3$. If $\|\beta\|_{\alpha} < B_n$ and $Y(M,F)C(M,F) < Y(\mathbb{S}^n)$, then there exists a metric \bar{F} conformal to F such that $\operatorname{Scal}_{\bar{F}}(x) = Y(M,\bar{F})$.

The contents of this paper are arranged as follows. In $\S 2$, we give a brief review of Finsler metrics and give the precise definition of strongly C-convex. In $\S 3$, we study the strongly C-convexity of Randers metrics. Throughout this paper, we always assume that the dimension $n \geq 3$.

2. Finsler metrics

Let M be an n-dimensional differentiable manifold with $n \geq 3$. The points in the tangent bundle TM are denoted by (x, y), where $x \in M$ and $y \in T_xM$. Let $(x^i; y^i)$ be the local coordinates of TM with $y = y^i \partial/\partial x^i$.

Let $F:TM\to [0,+\infty)$ be a Finsler metric on M. The fundamental form of F is

$$g = g_{ik}(x, y)dx^i \otimes dx^k, \quad g_{ik} := \left[\frac{1}{2}F^2\right]_{y^iy^k}.$$

Here and from now on, the lower index x^i, y^i always means partial derivatives, such as $F_{y^i} := \frac{\partial F}{\partial y^i}, F_{x^i} := \frac{\partial F}{\partial x^i}, [F^2]_{y^iy^k} := \frac{\partial^2 F^2}{\partial y^i\partial y^k}$, and etc.

The canonical projection $\pi: TM\setminus\{0\} \to M$ gives rise to a covector bundle π^*T^*M , on which there exists the Hilbert form $\omega = \ell_i dx^i$ where $\ell_i = F_{u^i}$, whose dual is the distinguished section of π^*TM

$$\ell = \ell^i \frac{\partial}{\partial x^i}$$
, with $\ell^i := \frac{y^i}{F}$.

The Cartan tensor (Cartan torsion) and the Cartan form are respectively

$$A = A_{ijk} dx^i \otimes dx^j \otimes dx^k, \quad A_{ijk} := \frac{F}{4} \left[F^2 \right]_{y^i y^j y^k},$$

$$I = I_i dx^i, \quad I_i := A_{ijk} g^{jk}, \quad (g^{jk}) = (g_{jk})^{-1}.$$

The spray coefficients are given as

$$G^{i} = \frac{1}{4}g^{il}\{[F^{2}]_{x^{k}y^{l}}y^{k} - [F^{2}]_{x^{l}}\}$$

which determine the Berwald connection coefficients in the following way

$$\Gamma^i_{jk} = G^i_{y^j y^k}.$$

The flag curvature tensor (Riemann curvature tensor) is given by

$$R^{i}_{\ k} = 2G^{i}_{x^{k}} - G^{i}_{x^{j}y^{k}}y^{j} + 2G^{j}G^{i}_{y^{j}y^{k}} - G^{i}_{y^{j}}G^{j}_{y^{k}},$$

while the Ricci curvature is defined as the trace

$$Ric(x,y):=\frac{1}{F^2}R^i{}_i.$$

The most important non-Riemannian curvature in Finsler geometry is the Landsberg curvature, which is defined as the derivative of the Cartan torsion

$$L_{ijk} := A_{ijk:m} \ell^m$$

where ":" is the horizontal covariant derivative with respect to the Berwald connection. The mean Landsberg tensor is

$$J = J_k dx^k$$
, $J_k := q^{ij} L_{iik}$.

On the punctured bundle $TM\setminus\{0\}$, there is the Sasaki type metric $g_{ik}dx^i\otimes dx^k+g_{ik}\frac{\delta y^i}{F}\otimes\frac{\delta y^k}{F}$, which induces a Riemannian metric on the projective sphere bundle SM

$$\hat{g} = g_{ik} dx^i \otimes dx^k + F[F]_{y^i y^k} \frac{\delta y^i}{F} \otimes \frac{\delta y^k}{F}.$$

Hence the volume form of SM can be expressed as [3, 7]

$$d\mu_{SM} = \Omega d\eta \wedge dx, \quad \Omega := \det\left(\frac{g_{ik}}{F}\right)$$

where

$$d\eta := \sum (-1)^{i-1} y^i dy^1 \wedge \dots \wedge \widehat{dy^i} \wedge \dots \wedge dy^n, \quad dx := dx^1 \wedge \dots \wedge dx^n.$$

The volume form of M induced by SM can be defined by

$$d\mu_F = \sigma_F(x)dx, \quad \sigma_F(x) := \frac{1}{\omega_{n-1}} \int_{S_x M} \Omega d\eta,$$

where ω_{n-1} is the volume of the (n-1)-dimensional standard sphere.

By integrating along the fibre, the scalar curvature can be defined as

$$Scal(x) = \frac{n \int_{S_x M} Ric \cdot \Omega d\eta}{\int_{S_x M} \Omega d\eta} + \frac{2n}{n-2} \frac{\int_{S_x M} g^{ij} J_{i:j} \cdot \Omega d\eta}{\int_{S_x M} \Omega d\eta}$$

as the dimension $n \ge 3$. In order to obtain the existence of Finsler metrics with constant scalar curvature Scal(x), the concept of C-convexity is introduced in [5]. Precisely, a Finsler metric is *strongly C-convex* if the tensor

$$\mathfrak{C}^{ij} = g^{ij} - \frac{n}{(n-1)(n-2)} (\ell^i I^j + \ell^j I^i + A_s^{ir} A_r^{js})$$
(2.1)

is positive definite, while *C-convexity* means the positivity of the tensor

$$c^{ij} = \frac{1}{\int_{S_{-M}} \Omega d\eta} \int_{S_{\pi M}} \mathfrak{C}^{ij} \cdot \Omega d\eta.$$

We shall point out that the C-convexity does not make sense as n=2.

One can find that a metric is strongly C-convex if its Cartan torsion is sufficiently small. In the next section, we shall study the stongly C-convexity of Randers metrics and obtain Theorem 1.2.

3. Strongly C-convexity of Randers Metrics

Let $F = \alpha + \beta$ be a Randers metric where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_iy^i$ with $b = \sqrt{a^{ij}b_ib_j} < 1$ and $(a^{ij}) = (a_{kl})^{-1}$. In this section, we shall investigate the positivity of (\mathfrak{C}^{ij}) of $F = \alpha + \beta$.

It is well-known that the Cartan tensor of a Randers metric is reducible

$$A_{ijk} = \frac{1}{n+1} \{ I_i h_{ik} + I_j h_{ik} + I_k h_{ij} \}$$

where h_{ij} : = $FF_{y^iy^j} = g_{ij} - \ell_i\ell_j$ is the angular tensor, and the Cantan form is

$$I_i = \frac{n+1}{2} \left(b_i - \frac{\beta}{\alpha} \alpha_{y^i} \right).$$

Being aware of $h^r_s h^s_r = n-1$ and $h^i_s h^{js} = g^{ij} - \ell^i \ell^j$, one can get

$$A_s^{ir}A_r^{js} = \frac{1}{(n+1)^2} \{2\|I\|^2 g^{ij} + (n+5)I^i I^j - 2\|I\|^2 \ell^i \ell^j \}$$

where

$$||I||^2 = I_i I_j g^{ij} = \frac{(n+1)^2}{4} \cdot \frac{b^2 - (\beta/\alpha)^2}{1 + (\beta/\alpha)} \le \frac{(n+1)^2}{2} \left(1 - \sqrt{1 - b^2}\right),\tag{3.1}$$

which can be found in [8]. Thus, we reach

$$\begin{split} \mathfrak{C}^{ij} &= \left(1 - 2\|I\|^2 \frac{n}{(n+1)^2 (n-1)(n-2)}\right) g^{ij} \\ &- \frac{n}{(n-1)(n-2)} \left(\ell^i I^j + \ell^j I^i + \frac{n+5}{(n+1)^2} I^i I^j - \frac{2\|I\|^2}{(n+1)^2} \ell^i \ell^j\right). \end{split}$$

For investigating the positivity, one can apply the continuity method. Let us consider the family $F_t = \alpha + t\beta$ where $t \in [0,1]$. It is clear that (\mathfrak{C}^{ij}) of F_0 is (a^{ij}) which is positive definite. Hence, once we obtain the invertibility of (\mathfrak{C}^{ij}) for every F_t , we shall have the positivity of (\mathfrak{C}^{ij}) for every F_t . Thus we shall calculate the determinant $\det(\mathfrak{C}^{ij})$ by applying the following lemma.

Lemma 3.1 ([2]). Let $H = (H^{ij})$ be a symmetric $n \times n$ matrix and $V = (V^i)$ be an n-vector. Put $G^{ij} = H^{ij} + \delta V^i V^j$ where δ is a complex number. Assuming that H is invertible with $H^{-1} = (H_{ij})$, it holds

$$\det(G^{ij}) = (1 + \delta v) \det(H^{ij}),$$

where $v = V_i V^i$ and $V_i = H_{ij} V^j$. Moreover, if $1 + \delta v \neq 0$, G is invertible and the inverse $G^{-1} = (G_{ij})$ is given by

$$G_{ij} = H_{ij} - \frac{\delta V_i V_j}{1 + \delta v}.$$

In order to apply the above lemma, we rewrite \mathfrak{C}^{ij} in the following form

$$\mathfrak{C}^{ij} = \rho_0 g^{ij} + \rho_1 \ell^i \ell^j - \rho_2 \left(I^i + \frac{(n+1)^2}{n+5} \ell^i \right) \left(I^j + \frac{(n+1)^2}{n+5} \ell^j \right)$$
(3.2)

where

$$\begin{split} & \rho_0 = & 1 - 2\|I\|^2 \frac{n}{(n+1)^2 (n-1)(n-2)}, \\ & \rho_1 = \frac{n}{(n-1)(n-2)} \left(\frac{(n+1)^2}{n+5} + \frac{2\|I\|^2}{(n+1)^2} \right), \\ & \rho_2 = \frac{n(n+5)}{(n+1)^2 (n-1)(n-2)}. \end{split}$$

Lemma 3.2. The coefficient ρ_0 is positive when $n \geq 4$. In dimension n = 3, $\rho_0 > 0$ if and only if $b^2 < \frac{8}{9}$.

Proof. By (3.1), we have $||I||^2 < \frac{(n+1)^2}{2}$, thus for $n \ge 4$ we have

$$\rho_0 = 1 - 2\|I\|^2 \frac{n}{(n+1)^2(n-1)(n-2)} > 1 - \frac{n}{(n-1)(n-2)} > 0.$$

For n=3, we use the estimate $||I||^2 \le \frac{(n+1)^2}{2}(1-\sqrt{1-b^2})$ where the equality can be achieved. Thus $\rho_0 > 0$ if and only if

$$\min_{y} \rho_0 = 1 - \frac{3}{16} \max_{y} ||I||^2 = 1 - \frac{3}{2} (1 - \sqrt{1 - b^2}) > 0$$

which implies $b^2 < \frac{8}{9}$.

In the remaining part of this section, we shall assume $\rho_0 > 0$. Therefore, by putting

$$\widetilde{H}^{ij} = \rho_0 g^{ij} + \rho_1 \ell^i \ell^j = \rho_0 \left(g^{ij} + \frac{\rho_1}{\rho_0} \ell^i \ell^j \right),$$

and according to Lemma 3.1, we have

$$\det(\widetilde{H}^{ij}) = (\rho_0)^n \det(g^{ij}) \left(1 + \frac{\rho_1}{\rho_0}\right).$$

One can easily find that $1 + \frac{\rho_2}{\rho_0} > 0$. Thus (\widetilde{H}^{ij}) is invertible with the inverse

$$\widetilde{H}_{ij} = \frac{1}{\rho_0} g_{ij} - \frac{\rho_1}{(\rho_0)^2} \frac{\ell_i \ell_j}{1 + \frac{\rho_1}{\rho_0}}.$$

Now, applying Lemma 3.1 to

$$\mathfrak{C}^{ij} = \widetilde{H}^{ij} - \rho_2 \left(I^i + \frac{(n+1)^2}{n+5} \ell^i \right) \left(I^j + \frac{(n+1)^2}{n+5} \ell^j \right),$$

we obtain

$$\det(\mathfrak{C}^{ij}) = \det(\widetilde{H}^{ij}) \left[1 - \rho_2 \widetilde{H}_{ij} \left(I^i + \frac{(n+1)^2}{n+5} \ell^i \right) \left(I^j + \frac{(n+1)^2}{n+5} \ell^j \right) \right]$$

$$= (\rho_0)^n \det(g^{ij}) \left[1 - \frac{\rho_2}{\rho_0} ||I||^2 - \frac{(n+1)^4}{(n+5)^2} \frac{\rho_2}{\rho_0 + \rho_1} \right]$$

$$= (\rho_0)^n \det(g^{ij}) \left[1 - \frac{n(n+1)^2}{2n^3 + 4n^2 - 12n + 10} - \frac{n(n+5)||I||^2}{(n+1)^2(n-1)(n-2) - 2n||I||^2} \right].$$

Theorem 3.3. A Randers metric F is strongly C-convex if and only if

$$b < B_n := \left(1 - \left(\frac{8n^3 - 16n^2 + 8n + 2}{n^4 + 3n^3 - 9n^2 + 7n}\right)^2\right)^{1/2}$$

where $b = \|\beta\|_{\alpha}$.

Proof. By the decomposition (3.2) and $n \geq 3$, the positivity of (\mathfrak{C}^{ij}) shall imply $\rho_0 > 0$. In fact, since $n \geq 3$, by picking a covector (V_i) such that

$$\ell^i V_i = 0, \quad \left(I^i + \frac{(n+1)^2}{n+5} \ell^i \right) V_i = 0,$$

we have $\mathfrak{C}^{ij}V_iV_j=\rho_0g^{ij}V_iV_j$. Thus the positivity of (\mathfrak{C}^{ij}) does imply $\rho_0>0$. Hence, if F is strongly C-convex, we have $\rho_0>0$ and $\det(\mathfrak{C}^{ij})>0$. Therefore, one shall get

$$1 - \frac{n(n+1)^2}{2n^3 + 4n^2 - 12n + 10} - \frac{n(n+5)\|I\|^2}{(n+1)^2(n-1)(n-2) - 2n\|I\|^2} > 0.$$
(3.3)

The inequality (3.3) is equivalent to

$$||I||^2 < \frac{(n+1)^2(n-1)(n-2)(n(n-2)-1)}{2n(n^3+3n^2-9n+7)}.$$

Since $\max_y ||I||^2 = \frac{(n+1)^2}{2} (1 - \sqrt{1-b^2})$, the above inequality holds if and only if

$$\frac{(n+1)^2}{2}(1-\sqrt{1-b^2})<\frac{(n+1)^2(n-1)(n-2)(n(n-2)-1)}{2n(n^3+3n^2-9n+7)},$$

from which we can get

$$b^{2} < 1 - \left(\frac{8n^{3} - 16n^{2} + 8n + 2}{n^{4} + 3n^{3} - 9n^{2} + 7n}\right)^{2}.$$
(3.4)

Conversely, let us assume that β satisfies (3.4). A simple calculation shows that $b^2 < \frac{8}{9}$ as n = 3. Hence, ρ_0 is positive according to Lemma 3.2. Since (3.15) is equivalent to (3.18), we have $\det(\mathfrak{C}^{ij}) > 0$ in this case. Now, put $F_t = \alpha + t\beta$ for $t \in [0,1]$, and denote \mathfrak{C}^{ij} of F_t by $\mathfrak{C}^{ij}(t)$. It is clear that $t\beta$ also satisfies (3.18) since $||t\beta||_{\alpha} \le ||\beta||_{\alpha}$. Hence, for every $t \in [0,1]$ we have $\det(\mathfrak{C}^{ij}(t)) > 0$ and thus the eigenvalues of $\mathfrak{C}^{ij}(t)$ are nonzero. Note that the eigenvalues of $\mathfrak{C}^{ij}(t)$ depend continuously on t, and $\mathfrak{C}^{ij}(0) = a^{ij}$ is positive definite. As t changes from 0 to 1, none of these eigenvalues can become negative. Thus \mathfrak{C}^{ij} is positive definite.

Remark. In order to have an intuition, we list below the decimal values of several B_n 's.

	n=3	n=4	n=5	n = 10	n = 100	n = 1000
B_n	0.2773	0.4869	0.6098	0.8464	0.9971	0.9999

As n grows, the condition on β becomes weaker. While it is critical as the dimension is low.

References

- [1] T. Aubin, Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296.
- [2] D. Bao, S. -S. Chern and Z.Shen, An introduction to Riemann-Finsler geometry, Grad. Texts in Math. 200, Springer, New York, 2000.
- [3] B. Chen and Y. Shen, On a class of critical Riemann-Finsler metrics, Publ. Math. Debrecen, 72/3-4 (2008), 451-468.
- [4] X. Cheng and M. Yuan, On Randers metrics of isotropic scalar curvature, Publ. Math. Debrecen, 84/1-2 (2014), 63-74.
- [5] B. Chen and L. Zhao, On a Yamabe type problem in Finsler geometry, Canad. Math. Bull. 60(2) (2017), 253-268.
- [6] B. Chen and L. Zhao, Finsler conformal changes preserving the modified Ricci curvature, Tohoku Math. J., 73 (2021), 39-48.
- [7] Q. He and Y. Shen, Some results on harmonic maps for Finsler manifolds, Inter. Jour. of Math., Vol.16, No.9(2005), 1017-1031.
- [8] M. Ji and Z. Shen, On strongly convex graphs in Minkowski geometry, Canad. Math. Bull. 45(2) (2002), 232-246.
- [9] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984), 479-495.
- [10] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), 265-274.
- [11] H. Yamabe, On the deformation of Riemannian structures on compact manfolds, Osaka Math. Jour., 12 (1960), 21-37.

Please cite this article using:

Bin Chen, Siwei Liu, A note on the Yamabe problem of Randers metrics, AUT J. Math. Comput., 2(2)~(2021)~165-170

DOI: 10.22060/ajmc.2021.20199.1056

