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ABSTRACT: The classical Yamabe problem in Riemannian geometry states that
every conformal class contains a metric with constant scalar curvature. In Finsler
geometry, the C-convexity is needed in general. In this paper, we study the strong
C-convexity of Randers metrics, and provide a result on the Yamabe problem for the
metrics of Randers type.
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1. Introduction

H. Yamabe attempted to seek Riemannian metrics with constant scalar curvature in a conformal class in [11]. A
bundle of works of N. Trudinger [10], T. Aubin [1] and R. Schoen [9] gives an affirmative answer to the Yamabe
Problem, which is a milestone in Riemannian geometry. In Finsler realm, X. Cheng and M. Yuan [6] studied the
Yamabe problem for the scalar curvature defined by H. Akbar-Zadeh, and obtained a negative answer for Randers
metrics. In the view of calculus of variations, L. Zhao and the first author defined a Finsler scalar curvature Scal(x)
and proved that a Finsler metric with constant scalar curvature is a critical point of the total scalar curvature
functional

S(F ) =
1

Vol(M)1− 2
n

∫
M

Scal(x) dµF

in its conformal class([4]). The Yamabe invariant is defined as Y (M,F ) = infu S(eu(x)F ). In order to have a
lower bound of S in the conformal class [F ] of the metric F , the condition C-convex is introduced in [4] which is
conformally invariant. By introducing another conformal invariant C(M,F ), L. Zhao and the first author partially
solved the Yamabe problem in Finsler geometry.

Theorem 1.1 ([4]). Let (Mn, F ) be a compact C-convex Finsler manifold with n ≥ 3. If Y (M,F )C(M,F ) <
Y (Sn), then there exists a metric F̄ conformal to F such that ScalF̄ (x) = Y (M, F̄ ).
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In [5], L. Zhao and the first author introduce the notion of strongly C-convexity (see (2.1) in §2) which is a
bit more stronger than C-convexity. In this paper, we shall study the strong C-convexity of Randers metrics and
obtain the following result.

Theorem 1.2. A Randers metric α+ β is strongly C-convex if and only if

‖β‖α < Bn :=

(
1−

(
8n3 − 16n2 + 8n+ 2

n4 + 3n3 − 9n2 + 7n

)2
)1/2

.

where the dimension n ≥ 3.

As a conclusion, we can give a statement to the Yamabe Problem of Randers metrics.

Corollary 1.3. Let F = α + β be a Randers metric on a compact manifold Mn with n ≥ 3. If ‖β‖α < Bn and
Y (M,F )C(M,F ) < Y (Sn), then there exists a metric F̄ conformal to F such that ScalF̄ (x) = Y (M, F̄ ).

The contents of this paper are arranged as follows. In §2, we give a brief review of Finsler metrics and give the
precise definition of strongly C-convex. In §3, we study the strongly C-convexity of Randers metrics. Throughout
this paper, we always assume that the dimension n ≥ 3.

2. Finsler metrics

Let M be an n-dimensional differentiable manifold with n ≥ 3. The points in the tangent bundle TM are denoted
by (x, y), where x ∈M and y ∈ TxM . Let (xi; yi) be the local coordinates of TM with y = yi∂/∂xi.

Let F : TM → [0,+∞) be a Finsler metric on M . The fundamental form of F is

g = gik(x, y)dxi ⊗ dxk, gik :=

[
1

2
F 2

]
yiyk

.

Here and from now on, the lower index xi, yi always means partial derivatives, such as Fyi := ∂F
∂yi , Fxi := ∂F

∂xi ,

[F 2]yiyk := ∂2F 2

∂yi∂yk
, and etc.

The canonical projection π : TM\{0} → M gives rise to a covector bundle π∗T ∗M , on which there exists the
Hilbert form ω = `idx

i where `i = Fyi , whose dual is the distinguished section of π∗TM

` = `i
∂

∂xi
, with `i :=

yi

F
.

The Cartan tensor (Cartan torsion) and the Cartan form are respectively

A = Aijkdx
i ⊗ dxj ⊗ dxk, Aijk :=

F

4

[
F 2
]
yiyjyk

,

I = Iidx
i, Ii := Aijkg

jk, (gjk) = (gjk)−1.

The spray coefficients are given as

Gi =
1

4
gil{[F 2]xkyly

k − [F 2]xl}

which determine the Berwald connection coefficients in the following way

Γijk = Giyjyk .

The flag curvature tensor (Riemann curvature tensor) is given by

Rik = 2Gixk −Gixjyky
j + 2GjGiyjyk −G

i
yjG

j
yk
,

while the Ricci curvature is defined as the trace

Ric(x, y) :=
1

F 2
Rii.

The most important non-Riemannian curvature in Finsler geometry is the Landsberg curvature, which is defined
as the derivative of the Cartan torsion

Lijk := Aijk:m`
m
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where “:” is the horizontal covariant derivative with respect to the Berwald connection. The mean Landsberg tensor
is

J = Jkdx
k, Jk := gijLijk.

On the punctured bundle TM\{0}, there is the Sasaki type metric gikdx
i ⊗ dxk + gik

δyi

F ⊗
δyk

F , which induces
a Riemannian metric on the projective sphere bundle SM

ĝ = gikdx
i ⊗ dxk + F [F ]yiyk

δyi

F
⊗ δyk

F
.

Hence the volume form of SM can be expressed as [3, 7]

dµSM = Ωdη ∧ dx, Ω := det
(gik
F

)
where

dη :=
∑

(−1)i−1yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn, dx := dx1 ∧ · · · ∧ dxn.

The volume form of M induced by SM can be defined by

dµF = σF (x)dx, σF (x) :=
1

ωn−1

∫
SxM

Ωdη,

where ωn−1 is the volume of the (n− 1)-dimensional standard sphere.
By integrating along the fibre, the scalar curvature can be defined as

Scal(x) =

n

∫
SxM

Ric · Ωdη∫
SxM

Ωdη

+
2n

n− 2

∫
SxM

gijJi:j · Ωdη∫
SxM

Ωdη

as the dimension n ≥ 3. In order to obtain the existence of Finsler metrics with constant scalar curvature Scal(x),
the concept of C-convexity is introduced in [4]. Precisely, a Finsler metric is strongly C-convex if the tensor

Cij = gij − n

(n− 1)(n− 2)
(`iIj + `jIi +Airs A

js
r ) (2.1)

is positive definite, while C-convexity means the positivity of the tensor

cij =
1∫

SxM
Ωdη

∫
SxM

Cij · Ωdη.

We shall point out that the C-convexity does not make sense as n = 2.
One can find that a metric is strongly C-convex if its Cartan torsion is sufficiently small. In the next section,

we shall study the stongly C-convexity of Randers metrics and obtain Theorem 1.2.

3. Strongly C-convexity of Randers Metrics

Let F = α+ β be a Randers metric where α =
√
aijyiyj and β = biy

i with b =
√
aijbibj < 1 and (aij) = (akl)

−1.
In this section, we shall investigate the positivity of (Cij) of F = α+ β.

It is well-known that the Cartan tensor of a Randers metric is reducible

Aijk =
1

n+ 1
{Iihik + Ijhik + Ikhij}

where hij : = FFyiyj = gij − `i`j is the angular tensor, and the Cantan form is

Ii =
n+ 1

2

(
bi −

β

α
αyi

)
.

Being aware of hrsh
s
r = n− 1 and hish

js = gij − `i`j , one can get

Airs A
js
r =

1

(n+ 1)2
{2‖I‖2gij + (n+ 5)IiIj − 2‖I‖2`i`j}
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where

‖I‖2 = IiIjg
ij =

(n+ 1)2

4
· b

2 − (β/α)2

1 + (β/α)
≤ (n+ 1)2

2

(
1−

√
1− b2

)
, (3.1)

which can be found in [8]. Thus, we reach

Cij =

(
1− 2‖I‖2 n

(n+ 1)2(n− 1)(n− 2)

)
gij

− n

(n− 1)(n− 2)

(
`iIj + `jIi +

n+ 5

(n+ 1)2
IiIj − 2‖I‖2

(n+ 1)2
`i`j

)
.

For investigating the positivity, one can apply the continuity method. Let us consider the family Ft = α + tβ
where t ∈ [0, 1]. It is clear that (Cij) of F0 is (aij) which is positive definite. Hence, once we obtain the invertibility
of (Cij) for every Ft, we shall have the positivity of (Cij) for every Ft. Thus we shall calculate the determinant
det(Cij) by applying the following lemma.

Lemma 3.1 ([2]). Let H = (Hij) be a symmetric n × n matrix and V = (V i) be an n-vector. Put Gij =
Hij + δV iV j where δ is a complex number. Assuming that H is invertible with H−1 = (Hij), it holds

det(Gij) = (1 + δv) det(Hij),

where v = ViV
i and Vi = HijV

j. Moreover, if 1 + δv 6= 0, G is invertible and the inverse G−1 = (Gij) is given by

Gij = Hij −
δViVj
1 + δv

.

In order to apply the above lemma, we rewrite Cij in the following form

Cij = ρ0g
ij + ρ1`

i`j − ρ2

(
Ii +

(n+ 1)2

n+ 5
`i
)(

Ij +
(n+ 1)2

n+ 5
`j
)

(3.2)

where

ρ0 =1− 2‖I‖2 n

(n+ 1)2(n− 1)(n− 2)
,

ρ1 =
n

(n− 1)(n− 2)

(
(n+ 1)2

n+ 5
+

2‖I‖2

(n+ 1)2

)
,

ρ2 =
n(n+ 5)

(n+ 1)2(n− 1)(n− 2)
.

Lemma 3.2. The coefficient ρ0 is positive when n ≥ 4. In dimension n = 3, ρ0 > 0 if and only if b2 < 8
9 .

Proof. By (3.1), we have ‖I‖2< (n+1)2

2 , thus for n ≥ 4 we have

ρ0 = 1− 2‖I‖2 n

(n+ 1)2(n− 1)(n− 2)
> 1− n

(n− 1)(n− 2)
> 0.

For n = 3, we use the estimate ‖I‖2≤ (n+1)2

2 (1−
√

1− b2) where the equality can be achieved. Thus ρ0 > 0 if and
only if

min
y
ρ0 = 1− 3

16
max
y
‖I‖2= 1− 3

2
(1−

√
1− b2) > 0

which implies b2 < 8
9 . �

In the remaining part of this section, we shall assume ρ0 > 0. Therefore, by putting

H̃ij = ρ0g
ij + ρ1`

i`j = ρ0

(
gij +

ρ1

ρ0
`i`j

)
,

and according to Lemma 3.1, we have

det(H̃ij) = (ρ0)n det(gij)

(
1 +

ρ1

ρ0

)
.
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One can easily find that 1 + ρ2
ρ0
> 0. Thus (H̃ij) is invertible with the inverse

H̃ij =
1

ρ0
gij −

ρ1

(ρ0)2

`i`j
1 + ρ1

ρ0

.

Now, applying Lemma 3.1 to

Cij = H̃ij − ρ2

(
Ii +

(n+ 1)2

n+ 5
`i
)(

Ij +
(n+ 1)2

n+ 5
`j
)
,

we obtain

det(Cij) = det(H̃ij)

[
1− ρ2H̃ij

(
Ii +

(n+ 1)2

n+ 5
`i
)(

Ij +
(n+ 1)2

n+ 5
`j
)]

=(ρ0)n det(gij)

[
1− ρ2

ρ0
‖I‖2 − (n+ 1)4

(n+ 5)2

ρ2

ρ0 + ρ1

]
=(ρ0)n det(gij)

[
1− n(n+ 1)2

2n3 + 4n2 − 12n+ 10

− n(n+ 5)‖I‖2

(n+ 1)2(n− 1)(n− 2)− 2n‖I‖2

]
.

Theorem 3.3. A Randers metric F is strongly C-convex if and only if

b < Bn :=

(
1−

(
8n3 − 16n2 + 8n+ 2

n4 + 3n3 − 9n2 + 7n

)2
)1/2

where b = ‖β‖α.

Proof. By the decomposition (3.2) and n ≥ 3, the positivity of (Cij) shall imply ρ0 > 0. In fact, since n ≥ 3, by
picking a covector (Vi) such that

`iVi = 0,

(
Ii +

(n+ 1)2

n+ 5
`i
)
Vi = 0,

we have CijViVj = ρ0g
ijViVj . Thus the positivity of (Cij) does imply ρ0 > 0. Hence, if F is strongly C-convex, we

have ρ0 > 0 and det(Cij) > 0. Therefore, one shall get

1− n(n+ 1)2

2n3 + 4n2 − 12n+ 10
− n(n+ 5)‖I‖2

(n+ 1)2(n− 1)(n− 2)− 2n‖I‖2
> 0. (3.3)

The inequality (3.3) is equivalent to

‖I‖2 < (n+ 1)2(n− 1)(n− 2)(n(n− 2)− 1)

2n(n3 + 3n2 − 9n+ 7)
.

Since maxy‖I‖2 = (n+1)2

2 (1−
√

1− b2), the above inequality holds if and only if

(n+ 1)2

2
(1−

√
1− b2) <

(n+ 1)2(n− 1)(n− 2)(n(n− 2)− 1)

2n(n3 + 3n2 − 9n+ 7)
,

from which we can get

b2 < 1−
(

8n3 − 16n2 + 8n+ 2

n4 + 3n3 − 9n2 + 7n

)2

. (3.4)

Conversely, let us assume that β satisfies (3.4). A simple calculation shows that b2 < 8
9 as n = 3. Hence, ρ0 is

positive according to Lemma 3.2. Since (3.15) is equivalent to (3.18), we have det(Cij) > 0 in this case. Now, put
Ft = α+ tβ for t ∈ [0, 1], and denote Cij of Ft by Cij(t). It is clear that tβ also satisfies (3.18) since ‖tβ‖α ≤ ‖β‖α.
Hence, for every t ∈ [0, 1] we have det(Cij(t)) > 0 and thus the eigenvalues of Cij(t) are nonzero. Note that the
eigenvalues of Cij(t) depend continuously on t, and Cij(0) = aij is positive definite. As t changes from 0 to 1, none
of these eigenvalues can become negative. Thus Cij is positive definite. �

Remark. In order to have an intuition, we list below the decimal values of several Bn’s.

n = 3 n = 4 n = 5 n = 10 n = 100 n = 1000
Bn 0.2773 0.4869 0.6098 0.8464 0.9971 0.9999

As n grows, the condition on β becomes weaker. While it is critical as the dimension is low.

169



Bin Chen et al., AUT J. Math. Com., 2(2) (2021) 165-170, DOI:10.22060/ajmc.2021.20199.1056

References
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