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1. Introduction

H. Yamabe attempted to seek Riemannian metrics with constant scalar curvature in a conformal class in [11]. A
bundle of works of N. Trudinger [10], T. Aubin [1] and R. Schoen [9] gives an affirmative answer to the Yamabe
Problem, which is a milestone in Riemannian geometry. In Finsler realm, X. Cheng and M. Yuan [6] studied the
Yamabe problem for the scalar curvature defined by H. Akbar-Zadeh, and obtained a negative answer for Randers
metrics. In the view of calculus of variations, L. Zhao and the first author defined a Finsler scalar curvature Scal(z)
and proved that a Finsler metric with constant scalar curvature is a critical point of the total scalar curvature
functional

1
S(F) = W /M Scal(x) dup

in its conformal class([4]). The Yamabe invariant is defined as Y (M, F) = inf, S(e*™®)F). In order to have a
lower bound of § in the conformal class [F] of the metric F, the condition C-convez is introduced in [4] which is
conformally invariant. By introducing another conformal invariant C (M, F'), L. Zhao and the first author partially
solved the Yamabe problem in Finsler geometry.

Theorem 1.1 ([4]). Let (M",F) be a compact C-convex Finsler manifold with n > 3. If Y(M,F)C(M,F) <
Y (S™), then there exists a metric F' conformal to F' such that Scalp(x) =Y (M, F).
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In [5], L. Zhao and the first author introduce the notion of strongly C-convexity (see (2.1) in §2) which is a
bit more stronger than C-convexity. In this paper, we shall study the strong C-convexity of Randers metrics and
obtain the following result.

Theorem 1.2. A Randers metric a + 8 is strongly C-convex if and only if

1/2
W”<BM_G_GW—MM+%+33

nd +3n3 — 92+ 7n
where the dimension n > 3.

As a conclusion, we can give a statement to the Yamabe Problem of Randers metrics.

Corollary 1.3. Let F' = a+ 3 be a Randers metric on a compact manifold M™ with n > 3. If ||B|la < Bn and
Y(M,F)C(M,F) <Y(S"), then there exists a metric F' conformal to F such that Scalg(x) =Y (M, F).

The contents of this paper are arranged as follows. In §2, we give a brief review of Finsler metrics and give the
precise definition of strongly C-convex. In §3, we study the strongly C-convexity of Randers metrics. Throughout
this paper, we always assume that the dimension n > 3.

2. Finsler metrics

Let M be an n-dimensional differentiable manifold with n > 3. The points in the tangent bundle TM are denoted
by (x,y), where x € M and y € T, M. Let (2% ") be the local coordinates of TM with y = y'9/dx".
Let F': TM — [0,+00) be a Finsler metric on M. The fundamental form of F is

. 1
9 = gik(x,y)da’ @ da*, ggy, := {Fz] .
2 ik
yiy
Here and from now on, the lower index z?,y* always means partial derivatives, such as Fyi = g—f;, F, = gf,; ,
F2) ik = %, and etc.
y'y 0y 0y

The canonical projection = : TM\{0} — M gives rise to a covector bundle 7*T*M, on which there exists the
Hilbert form w = ¢;dz* where ¢; = F,i, whose dual is the distinguished section of 7*T'M

i 0 : iy

The Cartan tensor (Cartan torsion) and the Cartan form are respectively

- F
A= Aijkdx QR dr’ ® d:Ck, Aijk = 1 [F2] yiyiyk

I =Ldd', I:=Agg’™, (¢7%) = (g56) "
The spray coefficients are given as
Gt = 30 Py ~ [F}
which determine the Berwald connection coefficients in the following way

i
k=G

i
yiyk:
The flag curvature tensor (Riemann curvature tensor) is given by

Ry, =2GL — Gl wy) +2G9GY; . — Gl G; .
while the Ricci curvature is defined as the trace

1
Ric(z,y) == —

= =R

The most important non-Riemannian curvature in Finsler geometry is the Landsberg curvature, which is defined
as the derivative of the Cartan torsion
Liji == Aijlml™
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@.”

where “:” is the horizontal covariant derivative with respect to the Berwald connection. The mean Landsberg tensor
is
J = Jypda®, Ty = g Lij.

On the punctured bundle TM\{0}, there is the Sasaki type metric g;zdz’ ® daz* + gik%yi ® %, which induces
a Riemannian metric on the projective sphere bundle SM

k

%

oy . 0y"

~ i k
§ = ginda' @ de® + F[Flyiye— © —.

Hence the volume form of SM can be expressed as [3, 7|
gik
dpusy = Qdn ANdx, Q:=det (?>

where ' 4 e
dn = Z(—l)z_lyzdy1 A ANdyt A---ANdy™, de=dzt A Ada™.
The volume form of M induced by SM can be defined by

1
dpp = op(z)de, op(z):= o Qdn,
n—1Js, M

where w,,_1 is the volume of the (n — 1)-dimensional standard sphere.
By integrating along the fibre, the scalar curvature can be defined as

n/ Ric - Qdn / g" Jij - Qdn
S. M 2n Js,m

Qdn n-2 Qdn
Sy M S M

Scal(z) = +

as the dimension n > 3. In order to obtain the existence of Finsler metrics with constant scalar curvature Scal(z),
the concept of C-convexity is introduced in [4]. Precisely, a Finsler metric is strongly C-convez if the tensor

n

S T [T=)

(017 4+ 07T 4 A'r A%9) (2.1)

is positive definite, while C-converity means the positivity of the tensor
. 1 -
= ¢ - Qdn.
J. g1 21 Js,m

We shall point out that the C-convexity does not make sense as n = 2.
One can find that a metric is strongly C-convex if its Cartan torsion is sufficiently small. In the next section,
we shall study the stongly C-convexity of Randers metrics and obtain Theorem 1.2.

3. Strongly C-convexity of Randers Metrics

Let F' = a + (3 be a Randers metric where a = y/a;;y%y7 and 8 = b;y* with b = \/ab;b; < 1 and (a") = (ag) "'
In this section, we shall investigate the positivity of (€¥) of F = o + 3.
It is well-known that the Cartan tensor of a Randers metric is reducible

1
Aijk - m {Iihik + I]hzk + Ikh’tj}

where h;;: = FFyi,; = g;; — £;£; is the angular tensor, and the Cantan form is
n+1 B
L; = B <bz — aayi) .

Being aware of h'h$ =n — 1 and hih/® = g¥ — (47, one can get

ATAY = m{ﬂlﬂlzg” +(n+5)I'F = 2|20}
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where
2 _ 1 ‘ij:(n‘*‘l)Q.bQ_(ﬁ/a)Q<(”+1)2 . Y
11 = LiI,g 0 G S 3 (1 V1 b), (3.1)
which can be found in [8]. Thus, we reach
ij _ (1 _ 2 n ij
e = (120 e o ) ¢
" (dpqery P2 g 2R i)
CES ) (g O Ty mrnz

For investigating the positivity, one can apply the continuity method. Let us consider the family F; = o + ¢
where ¢ € [0, 1]. It is clear that (€¥) of Fy is (™) which is positive definite. Hence, once we obtain the invertibility
of (€¥) for every F, we shall have the positivity of (€%) for every F;. Thus we shall calculate the determinant
det(€) by applying the following lemma.

Lemma 3.1 ([2]). Let H = (HY) be a symmetric n x n matriz and V = (V') be an n-vector. Put GY =
H + §V*VI where § is a complex number. Assuming that H is invertible with H=' = (H;;), it holds

det(GY) = (1 + ov) det(HY),
where v =V;V' and V; = H;;VI. Moreover, if 1 + dv # 0, G is invertible and the inverse G=1 = (G;;) is given by

YA

G =H;; — )
7 14 6v

In order to apply the above lemma, we rewrite €% in the following form

¢Y = K 0 — I'+-—=0 D4+ —>0 3.2
pog~ + p1 p2< + "5 + P (3.2)
where
n
po =1—2|1]?

(n+1)2(n—1)(n—-2)’
_ n (n+1)* 21|
pl_(nl)(n2)( nt5 +(n+1)2>’
B n(n+5)
P D2 - D —2)

Lemma 3.2. The coefficient po is positive when n > 4. In dimension n =3, po > 0 if and only if b < %.

Proof. By (3.1), we have ||I]|>< %7 thus for n > 4 we have

Po:1—2HI||2(n+1)2(n_1)(n—2) e R

For n = 3, we use the estimate |I]|?< %(1 — /1 — b?) where the equality can be achieved. Thus pg > 0 if and
only if

3 3
minpg = 1 — — max||I|*=1— (1 -1 -52) >0

Y 16 v 2
which implies b? < §. O
In the remaining part of this section, we shall assume pg > 0. Therefore, by putting

HY = pog" + prl't) = po <9J+Mj)7
Po

and according to Lemma 3.1, we have

det(HY) = (po)™ det(g™) (1 + Z;) .
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One can easily find that 1+ £2 > 0. Thus (H) is invertible with the inverse

~ 1 P1 &6
Hij= —gij - .
T T P T

Now, applying Lemma 3.1 to
P . (n+1)% - (n+1)% .
¢V = HY — r+-——¢)\r+-——7=w
p2< * n+5 * n+5 ’
we obtain
. o ~ . (n+1)% - (n+1)%
det(€Y) =det(HY) |1 —poHyy (' + ——0 ) | [P + ———¥
et(€V) =det( ){ 02 J< +n—|—5 +n+5
(n+1)*  po }
(n+5)% po + p1
B n(n+1)32
2n3 +4n? — 12n + 10
_ n(n +5)|1]”
(n+1)?(n —1)(n —2) — 2n[|I|]?

Theorem 3.3. A Randers metric F is strongly C-convez if and only if
. 1/2
bop o 1 (301607 + 802 2
" nt +3n3 —9n2 + Tn

Proof. By the decomposition (3.2) and n > 3, the positivity of (¢¥) shall imply py > 0. In fact, since n > 3, by
picking a covector (V;) such that

—mW®m%@”uw
Po

=(po)™ det(g*) {1

where b = |||

(n+1)2
n+95
we have ¢# ViV, = pog" V;iV;. Thus the positivity of (€%9) does imply po > 0. Hence, if F is strongly C-convex, we

have pg > 0 and det(€%) > 0. Therefore, one shall get
n(n+1)32 n(n +5)|I]
B4 dAn? —12n+10  (n+ 1)2(n—1)(n — 2) — 2n|/T||2

'V, =0, <Ii + ei) V; =0,

> 0. (3.3)

The inequality (3.3) is equivalent to

(n+1)%(n—1)(n —2)(n(n — 2) — 1).

I)? <
Il 2n(n34+3n2 —9n+17)

Since max,||1]|* = %(1 — /1 —b?), the above inequality holds if and only if

(n+1)2 n+1)2(n—1)(n—2)(n(n—2)—1)
2 2n(nd +3n2 —9n+7)

bl

(1-+v1-0?)<

from which we can get

P o1 (8n3—16n2+8n+2)2_

3.4
nt4+3n3 —9n2 4+ Tn (3.4)

Conversely, let us assume that 3 satisfies (3.4). A simple calculation shows that b? < % as n = 3. Hence, pg is
positive according to Lemma 3.2. Since (3.15) is equivalent to (3.18), we have det(€™) > 0 in this case. Now, put
Fy=a+tB for t € [0,1], and denote €% of F, by €¥(t). It is clear that ¢/ also satisfies (3.18) since [|[t8]a < ||B]la-
Hence, for every t € [0,1] we have det(€¥(¢)) > 0 and thus the eigenvalues of €¥(¢) are nonzero. Note that the
eigenvalues of € (t) depend continuously on ¢, and €% (0) = a* is positive definite. As ¢ changes from 0 to 1, none
of these eigenvalues can become negative. Thus €% is positive definite. 0

Remark. In order to have an intuition, we list below the decimal values of several B,,’s.

n=3 | n=4 | n=5|n=10 | n=100 | n = 1000
B, | 0.2773 | 0.4869 | 0.6098 | 0.8464 | 0.9971 0.9999

As n grows, the condition on 8 becomes weaker. While it is critical as the dimension is low.
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