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ABSTRACT: On a real vector space V , a Randers norm F̂ is defined by F̂ = α̂+ β̂,
where α̂ is a Euclidean norm and β̂ is a covector. We show that the unit sphere Σ in the
Randers space (V, F̂ ) has positive flag curvature, if and only if |β̂|α̂ < (5−

√
17)/2 ≈

0.43845, thus answering a problem proposed by Prof. Zhongmin Shen. Moreover, we
prove that the flag curvature of Σ has a universal lower bound −4.
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1. Introduction

Let (V, F̂ ) be a Minkowski space of dimension n + 1 and let Σ = {x ∈ V | F̂ (x) = 1} be the unit sphere in V . By
definition, Σ is a strongly convex hypersurface in V .

There are two natural geometric structures defined on the punctured space V \ {0}. The first is a Riemannian
metric defined by the Hessian of 1

2 F̂
2, called the Hessian metric or fundamental tensor. As a Riemannian subman-

ifold, Σ has extrinsic curvature +1 (see [1, §14.5]). The second one is the Finsler metric F̂ itself. As a Finsler
submanifold, Σ has a induced Finsler metric F . When F̂ is a Euclidean norm, it is well known that (Σ, F ) has
constant sectional curvature +1. If F̂ is not Euclidean, then one cannot expect (Σ, F ) to have constant curvature.
It is natural to ask, does (Σ, F ) always have positive flag curvature? This question is the 25th in Prof. Zhongmin
Shen’s list of open problems [6]. In this short note, we will provide a negative answer to this question.

We consider a special class of Minkowski norms, namely, Randers norms. In this case, the induced metric on Σ
is also of Randers type. One may consult [3, 2, 7, 8] for related results on Randers manifolds.

Recall that a Randers norm F̂ is defined by F̂ = α̂+ β̂, where α̂ is a Euclidean norm and β̂ is a linear function
on V with |β̂|α̂ < 1. The main result of this paper is the following

Theorem 1.1. Let F̂ = α̂ + β̂ be a Randers norm on an n + 1 dimensional real vector space V . Let ε := |β̂|α̂,
ε0 = (5 −

√
17)/2 and let Σ be the unit sphere in V . If ε < ε0, then Σ has positive flag curvature everywhere; if
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ε = ε0, then Σ is non-negatively curved and the zero flag curvature only appears at the equator of Σ; if ε > ε0, then
there are flags on the equator of Σ with negative flag curvature.

According to this theorem, the unit sphere in a Minkowski space need not to be positively curved. This strange
phenomenon shows that the concept of flag curvature could be more complicated than we usually thought (one may
compare the survey article [4]).

When |β̂|α̂ > ε0 ≈ 0.43845, it is now known that Σ may posess negative curvature somewhere. What will happen

when |β̂|α̂ approaches 1?

Theorem 1.2. Let F̂ = α̂ + β̂ be a Randers norm on an n + 1 dimensional real vector space V and let Σ be
the unit sphere in V . Let ε := |β̂|α̂, then the lower bound of the flag curvature of the induced metric on Σ is
1
2 (1 + ε)2(ε2 − 5ε+ 2). When ε→ 1, the above lower bound approaches its minimal value −4.

The paper is organized as follows. In Section 2, we will review some basic facts on Randers manifolds and derive
a formula for the induced metric on Σ. In Section 3, we compute the Riemann curvature tensor of the induced
metric and analyze its eigenvalues. In Section 4, we will investigate the sign of the flag curvature and find its
minimal value, thus provide the proofs of the above theorems.

2. The Randers metric and its navigation data

Suppose F̂ = α̂ + β̂ is a Randers norm on V . Without loss of generality, we may assume that F̂ has navigation
data (ĥ, Ŵ ), where ĥ(y) = |y| is the standard Euclidean norm on V and Ŵ is a fixed vector in V with ĥ(Ŵ ) =
|Ŵ | = ε ∈ (0, 1). Let Sn be the standard Euclidean sphere

Sn = {x ∈ V | ĥ(x) = 1}.

Then the unit sphere Σ in (V, F̂ ) is nothing but Sn shifted Ŵ . Since (V, F̂ ) is invariant by translations, the induced
metric on Σ is isometric to the one induced on Sn. So we will work on Sn other than Σ.

Now we try to describe the induced Randers metric on Sn. At each point x ∈ Sn, we have an induced indicatrix
Ix = {y ∈ TxSn | F̂ (y) = 1}. To obtain Ix, one can first construct the unit Euclidean sphere with center x, then
shift it by the vector Ŵ , and finally cut it by the tangent hyperplane TxS

n. Notice that the hyperplane TxS
n has

unit normal x (with respect to the Euclidean metric ĥ), so Ix is a sphere of radius

√
1− 〈Ŵ , x〉2, whose center is

Ŵ − 〈Ŵ , x〉x ∈ TxSn. Thus we have proved

Proposition 2.1. The induced Randers metric on Sn has navigation data (h,W ), where

h(x, y) =
|y|√

1− 〈Ŵ , x〉2
, W (x) = Ŵ − 〈Ŵ , x〉x.

Notice that in the above proposition, |y| is the standard Riemannian metric on Sn with constant sectional
curvature +1. Write Ŵ = εa with a ∈ Sn, then we may assume 〈Ŵ , x〉 = ε cos r, where r is the spherical distance
between a and x. Notice that W (x) belongs to the plane span{a, x}, so it is proportional to ∂

∂r . Together with the
fact that |W (x)| = ε sin r, we have

h =

√
d r2 + sin2 r dσ2

√
1− ε2 cos2 r

, W = −ε sin r
∂

∂r
,

where d σ is the standard Riemannian metric on Sn−1. By using the well known routine we obtain

Corollary 2.2. The induced Randers metric on Sn is given by (1− ε2)−1 · F , where F = α+ β and

α =

√
(1− ε2 cos2 r) d r2 + (1− ε2) sin2 r dσ2, β = ε sin r d r. (2.1)

Consequently the flag curvature of the induced Randers metric is (1− ε2)2 times that of F .

A glance at the above expression shows that β is closed. This will be crucial in our computation of flag curvature.
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3. Computation of flag curvature

The closeness of β implies that F is projectively related to α. To establish a relation between flag curvatures of F
and α, we shall use the following theorem.

Theorem 3.1. Let F and F̄ be two projectively related Finsler metrics on a manifold M , then their Riemann
curvature tensors Ry and R̄y satisfy

Rji = R̄ki h
j
k + (P 2 − Ṗ )hji ,

where hji = δji − Fyiyj/F is the angular metric, P = Ḟ /(2F ) and the over dot denotes the action of the F̄ -spray,

i.e., Ṗ = Pxiyi − 2ḠiPyi .

We believe that this theorem is known to P. Foulon since an equivalent form of this theorem appears in [5].
Now we continue to discuss the Randers metric F = α+ β. Notice that the angular metrics of F and α satisfy

hij = FFyiyj = Fαyiyj =
F

α
h̄ij .

By the above theorem we have

KF (y ∧ v, y) =
hjlR

j
i v
ivl

F 2hilvivl

=
hjlR̄

k
i h

j
kv
ivl

F 2hilvivl
+

1

F 2
(P 2 − Ṗ )

=
h̄jlR̄

k
i h

j
kv
ivl

F 2h̄ilvivl
+

1

F 2
(P 2 − Ṗ )

=
h̄lkR̄

k
i v
ivl

F 2h̄ilvivl
+

1

F 2
(P 2 − Ṗ )

=Kα(y ∧ v, y) +
1

F 2
(P 2 − Ṗ ).

Thus we have proved the following.

Theorem 3.2. Let F = α + β be a Randers metric where β is a closed one form. Then the flag curvatures of F
and α are related by

KF (y ∧ v, y) = Kα(y ∧ v) +
1

F 2
(P 2 − Ṗ ),

where P = Ḟ /(2F ) and the over dot denotes the action of the α-spray.

Remark 3.3. This theorem can also be proved by using Bao-Robles-Shen’s formula [2, 3]. The method above uses
Foulon’s formula [5] that relates the Jacobi endomorphisms of two projectively related Finsler metrics. The transition
from Jacobi endomorphism to flag curvature is due to the fact that the angular metrics of F and α only differ by a
scalar multiple. So actually this theorem holds even if α is not a Riemannian metric.

According to the above result, the flag curvature KF is just the sectional curvature Kα plus some correction
terms. Both the Riemann curvature tensor of α and the correction terms depend on the Riemann connection of α,
so we will compute the Riemann connection first.

3.1. Riemann connection of α

In standard notation, the Riemannian metric α is given by ψ2 d r2 + φ2 dσ2, where

ψ =
√

1− ε2 cos2 r, φ =
√

1− ε2 sin r.

Let {θi}ni=2 be a local orthonormal coframe field on Sn−1 so that

dσ2 = (θ2)2 + · · ·+ (θn)2.

Suppose the connection forms on Sn−1 are {θij}, then they satisfy the following structure equations

d θi = θj ∧ θji, θij + θji = 0.
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Moreover, since dσ2 has constant sectional curvature +1, we have

d θij − θik ∧ θkj = −θi ∧ θj .

Here and after, the indices i, j, k, · · · will always be in the range {2, 3, · · · , n}.
Let ω1 = ψ d r, ωi = φ θi, 2 ≤ i ≤ n, then {ω1, ωi} is a local orthonormal coframe field on Sn. Direct

computation yields

dω1 = 0,

d ωi = φ′ d r ∧ θi + φ d θi

= φ′/ψ ω1 ∧ θi + φ θj ∧ θji
= φ′/ψ ω1 ∧ θi + ωj ∧ θji.

It follows that the one forms
ω1i = −ωi1 = φ′/ψ · θi, ωji = θji

will satisfy the structure equations

dω1 = ωi ∧ ωi1, dωi = ω1 ∧ ω1i + ωj ∧ ωji.

So, the 1-forms {ω1i, ωji} are connection forms of α.

3.2. Riemann curvature tensor of α

The curvatures of α are encoded in the curvature forms {Ω1i,Ωij}. We have

Ω1i = dω1i − ω1j ∧ ωji = d(φ′/ψ θi)− φ′/ψ θj ∧ θji
= (φ′/ψ)′ d r ∧ θi = (φ′/ψ)′/(ψφ)ω1 ∧ ωi,

Ωij = dωij − ωi1 ∧ ω1j − ωik ∧ ωkj
= d θij + (φ′/ψ)2θi ∧ θj − θik ∧ θkj
=
(
(φ′/ψ)2 − 1

)
θi ∧ θj =

(
(φ′/ψ)2 − 1

)
/φ2 ωi ∧ ωj .

Consequently, the nonzero components of the Riemann curvature tensor are

R1i1i =Ri1i1 = −R1ii1 = −Ri11i =
(φ′/ψ)′

ψφ
= − 1

ψ4
,

Rijij =Rjiji = −Rijji = −Rjiij =
(φ′/ψ)2 − 1

φ2
= − 1

(1− ε2)ψ2
, i 6= j,

Now let y = y1e1+yiei, where {e1, ei} is the dual local frame field of {ω1, ωi}. Then we have α =
√

(y1)2 + (y2)2 + · · ·+ (yn)2

and

R11 =

n∑
i=2

Ri11iy
iyi = (α2 − (y1)2)/ψ4,

R1i = Ri1 = Ri1i1y
iy1 = −y1yi/ψ4,

Rii = R1ii1y
1y1 +

∑
j 6=i

Rjiijy
jyj = (y1)2/ψ4 + (α2 − (y1)2)− (yi)2)/((1− ε2)ψ2),

Rij = Rji = Rjijiy
jyi = −yjyi/((1− ε2)ψ2), i 6= j.

The last two lines can be summarized as

Rij =
1

ψ4
(y1)2δij +

1

(1− ε2)ψ2

(
(α2 − (y1)2)δij − yiyj

)
.

Proposition 3.4. Let α be the Riemannian metric given by (2.1), then the eigenvalues of the Riemann curvature
tensor R̄y are

λ0 = 0, λ1 = α2ψ−4,

λ2 = (y1)2ψ−4 + (α2 − (y1)2)(1− ε2)−1ψ−2,

where λ2 has multiplicity n− 2.
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Proof. We say that y is in general position if α2 6= (y1)2. For such y, the components y2, · · · , yn are not
simultaneously zero.

Now assume y is in general position. It is well known that R̄y(y) = 0, so R̄y has eigenvalue 0 with eigenvector
y.

Let v = v1e1 + viei with v1 = α2 − (y1)2, vi = −y1yi, then we have

R11v
1 +R1iv

i = α2ψ−4 · (α2 − (y1)2),

Ri1v
1 +Rijv

j = −α2ψ−4y1yi.

It follows that R̄y(v) = λ1 · v, i.e., λ1 = α2ψ−4 is an eigenvalue of R̄y with eigenvector v.
Now fix a pair of indices i, j with i 6= j and let w = −yjei + yiej , then one can check that R̄y(w) = λ2w.

For all possible choices of i, j, such vector w forms a linear space of dimension n− 2. Thus λ2 is an eigenvalue of
multiplicity n− 2.

Thus, when y is in general position, the proposition is proved. If y is not in general position, the result also
follows since R̄y is continuous in y. Indeed, when α2 = (y1)2, the eigenvalues λ1 and λ2 are equal and have
multiplicity n− 1. �

Corollary 3.5. Fix a nonzero vector y ∈ TxS
n. Let π be a plane in TxS

n that contains y, then the sectional
curvature Kα(π) satisfies

ψ−4 ≤ Kα(π) ≤ s2ψ−4 + (1− s2)(1− ε2)−1ψ−2,

where s = y1/α.

Proof. Suppose π is spanned by y and v = v1e1 + viei. Without loss of generality we may assume that y and v
are orthogonal. We have

Kα(π) =
Rijv

ivj

α2δijvivj
.

Thus Kα(π) attains its minimal and maximal values at the nonzero eigenvalues of R̄y/α
2. �

3.3. The correction terms

To treat the correction terms, we need to find the α-spray. By definition, α-spray is the unique vector field S̄ on
TSn satisfying

dω(S̄, · ) = −dα2/2,

where ω = y1ω1 + yiωi is the Hilbert form. Notice that

dω = d y1 ∧ ω1 + d yi ∧ ωi + yi dωi

= d y1 ∧ ω1 + d yi ∧ ωi + yi(ω1 ∧ ω1i + ωj ∧ θji),

we have

S̄ = y1e1 + yiei − 2G1 ∂

∂y1
− 2Gi

∂

∂yi
,

where the coefficient G1 is given by

G1 = −1

2

∑
i

(yi)2ω1i(ei) = −1

2
(α2 − (y1)2)φ′/(ψφ).

If we introduce the abbreviation s = y1/α, then G1 can also be written as

G1 = −1

2
α2(1− s2)φ′/(ψφ).

The other coefficients Gi will not be used, because we can express the quantity P as an expression of α, r, s, and
we have the following lemma.

Lemma 3.6. Suppose f is an expression of α, r, s, then we have

S̄(f) = α ·
(
(s/ψ) · fr + (1− s2)φ′/(ψφ) · fs

)
.

Proof. Notice that S̄(α) = 0, it remains to prove that S̄(s) = −2G1/α and S̄(r) = αs/ψ. They are straightforward.
�
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Now, the one form β can be written as by1 = bαs, where

b = ε sin rψ−1.

So we have F = (1 + bs)α. By using the above lemma we obtain

Ḟ = S̄(F ) = αS̄(bs) = α2 ·
(
s2b′/ψ + b(1− s2)φ′/(ψφ)

)
= α2ε cos r(ψ2 − µ2)ψ−4,

where µ = εs sin r. Further differentiation yields

F̈ = S̄(Ḟ ) = −α3µ(4− 3ψ2)(ψ2 − µ2)ψ−7.

Since P = Ḟ /(2F ), we find that the correction term is

1

F 2
(P 2 − Ṗ ) =

3Ḟ 2 − 2FF̈

4F 4
.

Substituting the previous results into the above expression, we conclude that the correction term equals

(ψ − µ)
(
(5− 3ψ2)µ2 + 2(4− 3ψ2)ψµ+ 3ψ2 − 3ψ4)

)
4ψ4(ψ + µ)3

.

By adding the above correction term to Corrollary 3.5, we get a preliminary bound of the flag curvatures of F .

4. Flag curvature lower bound

In this section we will try to find the minimal value of KF .
As Corollary 3.5 shows, Kα ≥ ψ−4. So we have

KF ≥
1

ψ4
+

(ψ − µ)
(
(5− 3ψ2)µ2 + 2(4− 3ψ2)ψµ+ 3ψ2 − 3ψ4

)
4ψ4(ψ + µ)3

=
(3ψ2 − 1)µ2 + 10ψµ− 3ψ4 + 7ψ2

4ψ4(ψ + µ)2
.

Denote the right hand side by K1. Recall that

ψ =
√

1− ε2 cos2 r, µ = εs sin r, s = y1/α.

The variables ψ and µ should satisfy the following constraints

ψ2 − µ2 ≥ 1− ε2,
√

1− ε2 ≤ ψ ≤ 1. (4.1)

Thus, to find the minimal value of KF , we only need to minimize the two variable function K1 subject to the above
constraints.

However, if we are only interested in the sign of K1, then the denominator of K1 has no influence at all. It
remains to consider the numerator

N1 = (3ψ2 − 1)µ2 + 10ψµ− 3ψ4 + 7ψ2.

Since |µ| < ψ ≤ 1, we have
∂N1

∂µ
= 2(3ψ2 − 1)µ+ 10ψ > 2ψ(5− |3ψ2 − 1|) > 0.

It follows that N1 is increasing in the variable µ. For each fixed ψ, the minimal value of N1 is attained at
µ0 = −

√
ψ2 − 1 + ε2 (this is equvalent to s = −1). Thus we are leading to the function

N2 = (3ψ2 − 1)(ψ2 − 1 + ε2)− 10ψ
√
ψ2 − 1 + ε2 − 3ψ4 + 7ψ2

= −10ψ
√
ψ2 − 1 + ε2 + (3ε2 + 3)ψ2 + (1− ε2).
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Equivalently, we can consider the rationalized version

N3 = −100ψ2(ψ2 − 1 + ε2) + ((3ε2 + 3)ψ2 + (1− ε2))2

= −(91− 18ε2 − 9ε4)ψ4 + (106− 100ε2 − 6ε4)ψ2 + (1− ε2)2.

Make a change of variables
t = ψ2, e = ε2,

then we have
N3 = −(91− 18e− 9e2)t2 + (106− 100e− 6e2)t+ (1− e)2,

where t and e satisfy the relations 1− e ≤ t ≤ 1 and 0 < e < 1.
Since the leading coefficient −(91 − 18e − 9e2) is negative, N3, as a quadratic function of t, must attain its

minimal value at 1 − e or 1. Notice that the values of N3 at t = 1 − e and t = 1 are (e − 1)2(3e + 4)2 and
4(e2 − 21e+ 4), respectively. Moreover,

(e− 1)2(3e+ 4)2 − 4(e2 − 21e+ 4) = e(76− 27e+ 6e2 + 9e3) > 0.

We conclude that the minimal value of N3 is 4(e2 − 21e + 4), which is attained at t = 1. This minimal value is
positive if and only if e < (21− 5

√
17)/2 = (5−

√
17)2/4.

Let ε0 = (5−
√

17)/2 ≈ 0.43845, then the above result can be summarized as the following theorem.

Theorem 4.1. Let F̂ = α̂+ β̂ be a Randers norm on an n+ 1 dimensional vector space V . Let ε := |β̂|α̂ and let Σ
be the unit sphere in V . If ε < ε0, then Σ has positive flag curvature everywhere; if ε = ε0, then Σ is non-negatively
curved and the zero flag curvature only appears at the equator of Σ; if ε > ε0, then there are flags on the equator of
Σ with negative flag curvature.

Remark 4.2. One may wonder if there is an ε such that Σ is negatively curved. This is impossible because according
to the classical Cartan-Hadamard’s theorem, Sn cannot carry a Finsler metric with everywhere non-positive flag
curvature since its universal cover is not Rn. The above analysis provieds another interpretation to this fact, because
every flag at the pole r = 0 or r = π has positive curvature.

Motivated by the above result, it is natural to conjecture that the minimal value of K1 is attained at ψ = 1 and
µ = −ε. This is indeed the case. To give a detailed proof of this fact, we shall need the following

Lemma 4.3. Notations as above, then we have

K1 ≥
ε2 − 5ε+ 2

2(ε− 1)2
, (4.2)

with equality holds if and only if ψ = 1 and µ = −ε.

Proof. We may view K1 as a two-variable function whose domain is given by (4.1). To find the minimal value of
K1, we first look at the interior extreme points, namely, those satisfying (K1)ψ = (K1)µ = 0. Direct computation
shows that

(K1)µ =
(3ψ2 − 2)ψ − 3(2− ψ2)µ

2ψ3(ψ + µ)3
,

(K1)ψ =
−(3ψ2 − 2)µ3 − 6(ψ2 + 2)ψµ2 − 32ψ2µ+ (3ψ2 − 14)ψ3

2ψ5(ψ + µ)3
.

The solutions of the system (K1)µ = (K1)ψ = 0 are (µ, ψ) = (0, 0), (−2
√

6, 2
√

6/3) or (2
√

6,−2
√

6/3). None of
these points are interior points. So the minimal value of K1 must be attained at the boundary.

If ψ =
√

1− µ2, then µ = 0, in this case K1 = 3ε2+4
4(1−ε2)2 > 0.

If ψ = 1, then µ = ±ε, in this case K1 = ε2±5ε+2
2(1+ε)2 .

It is easy to show that 3ε2+4
4(1−ε2)2 ≥

ε2−5ε+2
2(1+ε)2 , thus the minimal value of K1 is attained at ψ = 1 and µ = −ε. �

As a consequence of the inequality (4.2), the flag curvature lower bound of the induced metric on Sn is 1
2 (ε +

1)2(ε2 − 5ε+ 2), thus completing the proof of Theorem 1.2.
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