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ABSTRACT: In this paper group-invariant properties of the Dym equation are
studied. Lie symmetries are given and some group-invariant solutions are found with
the use of similarity variables obtained from these operators. Conservation laws are
computed via three methods. Direct method for construction of conservation laws
is introduced by the concept of multipliers and Euler-Lagrange operator. Next, the
non-linearly self-adjointness of the considered PDE is stated. Then, the modified
Noether’s theorem is used for finding conservation laws. Finally, the third method
is established via the Hereman-Pole method by using the evolutionary form of the
equation.
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1. Introduction

In the theory of solitons, the Dym equation is the third-order PDE

ut − u3uxxx = 0, (1)

first appeared in Kruskal and is attributed to an unpublished paper by Harry Dym [15, 25, 27]. This equation
represents a system in which dispersion and non-linearity are coupled together. Eq. (1) is a completely integrable
non-linear evolution equation that may be solved by means of the inverse scattering transform. It is interesting
because it obeys an infinite number of conservation laws; it does not possess the Painlevé property. The Dym
equation has strong links to the KdV equation. C.S. Gardner, J.M. Greene, Kruskal and R.M. Miura applied [Dym
equation] to the solution of corresponding problem in KdV equation. The Lax pair of the Harry–Dym equation is
associated with the Sturm–Liouville operator. The Liouville transformation transforms this operator isospectrally
into the Schrödinger operator [5]. Thus by the inverse Liouville transformation solutions of the Korteweg–de Vries
equation are transformed into solutions of the Dym equation. An explicit solution of the Dym equation, valid in a
finite interval, is found by an auto-Bäcklund transform [5].

In physics, a conservation law states that a particular measurable property of an isolated physical system does
not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation
of linear momentum, conservation of angular momentum, and conservation of electric charge. Also in mathematics
conservation law of a given system of DEs is a divergence expression that vanishes on all solutions of the DE system.
In the study of systems of DEs, the concept of a conservation law plays a very important role in the analysis of
essential properties of the solutions, particularly, investigation of existence, uniqueness and stability of solutions
[31]. There are several methods for finding conservation laws of a given system of DEs. In this work Ibragimov’s
method (modified version of Noether’s theorem), direct method and Hereman-Pole method are considered.

Lie symmetry operators of the equation are computed for finding the group-invariant solutions. Also these
operators will be used in Ibragimov’s method in order to calculate conservation laws.
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The paper is outlined in four sections. Below of the introduction, in section 2, Lie symmetry operators are found
by use of the standard invariant condition. Section 3 is devoted for finding group-invariant solutions obtained from
symmetries. Finally in the fourth section the above triple methods are applied in order to obtain conservation laws
of the Eq. (1).

2. Lie symmetries of Dym equation

Symmetry plays a very important role in various fields of nature. As is known to all, Lie method is an effective
method and a large number of equations [12] are solved with the aid of this method. There are still many authors
using this method to find the exact solutions [23, 32] of non-linear DEs. It is also a powerful tool for finding
exact solutions of non-linear problems [28, 29]. One of the most important application of symmetry’s method is
to reduce a systems of DEs, i.e., finding equivalent systems of DEs of simpler form, that is called reduction. This
method provides a systematic and computational algorithm for determining a large classes of special solutions. The
solutions of the obtained equivalent system will correspond to solutions of the original system. Many examples of
applications to physical problems have been demonstrated in a huge number of papers and a lot of excellent books.
The general procedure to obtain Lie symmetries of DEs, and their applications to find analytic solutions of the
equations are described in detail in several monographs on the subject [2, 3, 12, 28, 29] and in numerous papers in
the literature (e.g. [7, 8, 9, 14, 24, 34, 35]).

Fractional differential equations (FDEs) are a fast developing area of mathematical investigations, both the
theory and their applications. During the last four decades, several analytical and numerical methods were presented
for solving FDEs [1]. There are several methods an papers on the modeling and solutions of FDEs [4, 6, 16, 17, 18,
19, 20, 21, 22, 33].

Nowadays the group theory of DEs is extended to DEs of fractional order. This subject is the rapidly growing
field of research. In recent years, fractional order DEs have been the focus of many studies due to their frequent
appearance in various applications in fluid mechanics, viscoelasicity, biology, probability, mathematical physics and
engineering [11, 26, 30].

First of all, let us consider a one-parameter Lie group of infinitesimal transformation:

x → x+ εξ(x, t, u),

t → t+ ετ(x, t, u),

u → u+ εη(x, t, u),

with a small parameter ε� 1. The vector field associated with the above group of transformations can be written
as:

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
. (2)

The symmetry group of Eq. (1) will be generated by the vector field of the form (2). Thus, this equation admits
X as a symmetry operator if the condition,

X(3)(1)
∣∣∣
(1)

= 0, (3)

holds for the third prolongation,

X(3) = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂u
+ ηt

∂

∂ut
+ ηx

∂

∂ux
+ ηtt

∂

∂utt
+ ηtx

∂

∂utx
+ ηxx

∂

∂uxx
+ ηxxx

∂

∂uxxx
+ · · · .

Applying the third prolonged vector field and solving the determining equation [28, 29], one can demonstrate the
Eq. (1) admits the following Lie algebra of symmetries:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = x

∂

∂x
+ u

∂

∂u
, X4 = t

∂

∂t
− u

3

∂

∂u
, X5 =

x2

2

∂

∂x
+ xu

∂

∂u
. (4)

3. Similarity reductions and exact solutions

In this section symmetry reductions of Eq. (1) will be obtained by means of similarity transformations. De-
termination of similarity solutions of the Dym (and other) equation is a standard procedure to be found in many
texts [10].
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• Similarity solution of X1

For the generator X1 = ∂
∂t we have,

u = v(q, r), (5)

as a new variable where q = t, r = x are the group-invariants. Substituting (5) into (1), one can get,

v3v′′′ = 0. (6)

Consequently, the exact solution of Eq. (1) can be written as follows:

u(x, t) = d,

u(x, t) = −1

2
ax2 + bx+ c,

where a, b, c, d are arbitrary constants.

• Similarity solution of X2

The generator X2 = ∂
∂x yields the group-invariant q = x and r = t. After substitution (5) into (1), we obtain:

v′ = 0. (7)

Thus, the new exact solution is

u(x, t) = at+ b

for arbitrary constants.

• Similarity solution of X1 +X2

For the sum of two generators X1 and X2, we have u = v(r, q) where q+r = t, q = x are the group-invariants.
This substitution yields the reduced form

v′ + v3v′′′ = 0. (8)

So the Eq. (1) was converted to ODE (8). Consequently the solution of this equation satisfies the following
identity: ∫ u(x,t)

a

ϕ√
ϕ(−1− C2

2ϕ+ C1ϕ2 − 2C2ϕ)
dϕ− t+ x− C3 = 0.

• Similarity solution of X1 +X3

The sum of two generators X1 and X3, gives u = v(r, q) where q + r = t, eq = x are the group-invariants.
Substituting v(r, q) into (1), the following reduced equation is obtained:

v3v′ − v3v′′′ − v′ = 0. (9)

So the Eq. (25) was reduced to ODE (9). Consequently the solution of this equation satisfies the following
identity: ∫ u(t+ln x)

a

ϕ√
−ϕ(1 + 2C1ϕ2 − 2C2ϕ− ϕ3)

dϕ− t− lnx+ C3 = 0.

• Traveling wave solutions

The most useful solution is the traveling wave solution associated with the space and time translation sym-
metries. Using the transformation,

u(x, t) = v(ξ), ξ = x− ct, (10)

and inserting the expression (10) into (1) yields,

−Cv′ − v3v′′′ = 0. (11)

Thus, the corresponding traveling wave solution is∫ u(x−ct)

a

Cϕ√
Cϕ(C1ϕ2 − C2 − 2C2C2ϕ− C2C2

2ϕ2)
dϕ− x− C3 = 0.
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4. Conservation Laws

In the study of PDEs, conservation laws have many significant uses. They describe physical conserved quantities
such as energy, momentum and angular momentum. They are used in the analysis of stability and global behavior
of solutions. In addition, they play an essential role in the development of numerical methods and provide an
essential starting point for finding non-locally related systems and potential variables [24]. In this section we will
try to obtain conservation laws of Dym equation in three ways.

4.1. The direct method for construction of conservation laws

In general, non-trivial local conservation laws arise from linear combinations of the equations of the PDEs
system with multipliers that yield non-trivial divergence expressions. In asking such expressions, the dependent
variables and each of their derivatives that arise in PDE system, or appear in the multipliers, are replaced by
arbitrary functions. By their construction, such divergence expressions vanish on all solutions of the PDE system.
In particular, a set of multipliers

{ξσ[U ]}Nσ=1 = {ξ(x, U, ∂U, · · · , ∂lU)}Nσ=1,

yields a divergence expressions for PDEs system F{x;u} if the identity

ξσ[U ]Fσ[U ] ≡ DiΦ
i[U ],

holds for arbitrary functions U(x).
A set of non-singular local multipliers {ξσ(x, U, ∂U, · · · , ∂lU)}Nσ=1 yields a local conservation law for the PDEs

system F{x, u} if and only if the set of identities,

EUj (ξ(x, U, ∂U, · · · , ∂lU)Fσ(x, U, ∂U, · · · , ∂kU)) ≡ 0, (12)

holds for arbitrary functions U(x), [3]. We apply this method to obtain the local conservation laws of Eq. (1).
First all local conservation law multipliers of the zeroth order

ξ = ξ(x, t, U), (13)

are investigated. Using the Euler operator,

EU =
∂

∂U
−Dt

∂

∂Ut
−Dx

∂

∂Ux
+D2

x

∂

∂Uxx
+D2

t

∂

∂Utt
+Dxt

∂

∂Uxt

−Dxtt
∂

∂Uxtt
−Dxxt

∂

∂Uxxt
−Dttt

∂

∂Uttt
−Dxxx

∂

∂Uxxx
,

yields the following four sets of local multipliers,

ξ1(x, t, u) =
1

u3
, ξ2(x, t, u) =

1

u2
, ξ3(x, t, u) =

x

u3
, ξ4(x, t, u) =

x2

2u3
. (14)

Similarly each ξ determines a non-trivial zeroth order local conservation law

DtΨ(x, t, U) +DxΦ(x, t, U) = 0,

with the characteristic from

ξ(x, t, U)F [U ] = DtΨ(x, t, U) +DxΦ(x, t, U). (15)

Inserting (14) in (15) for ξ, densities and fluxes will be computed. The results are coming in Table 1.

Table 1: Zeroth order local conservation laws

Density Flux
1 0
x 0
0 1
−t x

20



S. R. Hejazi et al., AUT J. Math. Comput., 3(1) (2022) 17-26, DOI:10.22060/AJMC.2021.19680.1050

Now we seek all local conservation law multipliers of the first order,

ξ = ξ(x, t, U, Ux, Ut), (16)

of the Eq. (1), with using the corresponding Euler operators. The determining equations (12) for the multipliers
(16) become:

EU
[
ξ(x, t, U, Ux, Ut)((Ut − U3Uxxx)

]
≡ 0. (17)

Equations (17) split with respect to each of dependent variables derivatives that arise in PDEs system (except
dependent variables and first order derivatives of them). Then the solutions of (17) are the same as given by given
by (14). Each ξ(x, t, U, Ux, Ut) determines a non-trivial first order local conservation law

DtΨ(x, t, U, Ux, Ut) +DxΦ(x, t, U, Ux, Ut) = 0,

with the characteristic from,

ξ(x, t, U, Ux, Ut)F [U ] = DtΨ(x, t, U, Ux, Ut) +DxΦ(x, t, U, Ux, Ut). (18)

After replacement (16) in (18) and doing some tedious calculations Table 2 is obtained.

Table 2: First order local conservation laws

Density Fluxes
−xux − u+ 1 xut
−tux − 2tx tut + u+ x2

t2 + x2 −2xt
−ux − t ut + x
−uux uut + t

Finally the multiplier

ξ = ξ(x, t, U, Ux, Ut, Uxx, Utt, Uxt),

is applied for finding the second order conservation law. We can find ξ with the same expression such as (16), and
(13). This yields the second order fluxes and densities those are coming in Table 3.

Table 3: Second order local conservation laws

Density Fluxes
−utx − uxx utt + uxt
−ututx ututt
+uuxx + u2x −uutx − utux
+uutx + uxut −uutt − u2t
+xux + u+ tux −xut − tut − u
−uxuxx + x uxutx + t
tutx − ux −tutt
xutx + ut −xutt
utuxx + uxuxt −uxutt − utuxt
xuxx + ux + tuxx −xutx − tutx − ux
−uux − 2xt− t2

2 uut + x2 + xt+ t2 + t3

4.2. Conservation laws provided by Hereman-Pole method

To compute fluxes and densities for all of coefficients ξ, we use two-dimensional homotopy operator
(Hxu(x,t)(f),Htu(x,t)(f)).

Definition 4.1. Let f = f(x;uM (x)) be a differential function of order M . f is called exact if there exists a dif-
ferential function F (x;uM−1(x)) such that f = DxF and f = f((x, t);uM (x, t)) is exact if there exists a differential
vector function F = f((x, t);uM (x, t)) such that f = DivF .

Theorem 4.1. A differential function f = f(X;UM (X)) is exact if and only if LU(X)f ≡ 0. Here, 0 is the vector
(0, 0, · · · , 0) which has N components matching the number of components of U .
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Definition 4.2. Let f(X;uM (X)) be an exact differential function involving two independent variables X = (x, t).
The second homotopy operator is a vector operator with two components, (Hxu(x,t)(f),Htu(x,t)(f)) where,

H(x)
u(x,t)(f) =

∫ 1

0

q∑
j=1

I(x)uj(x,t)(f)[λu]
dλ

λ
, (19)

and,

H(t)
u(x,t)(f) =

∫ 1

0

q∑
j=1

I(t)uj(x,t)(f)[λu]
dλ

λ
. (20)

The x-integrand, I(x)uj(x,t)f , is given by,

I(x)uj(x,t)(f) =

Mj
1∑

k1=1

Mj
2∑

k2=0

[
k1−1∑
i1=0

k2∑
i2=0

Bxuxi1 ti2 (−Dx)k1−i1−1(−Dt)
k2−i2

]
∂f

∂uxk1 tk2

, (21)

with combinatorial coefficient Bx = B(i1, i2, k1, k2) expressed as:

Bx =

(
i1+i2
i1

)(
k1+k2−i1−i2−1

k1−i1−1
)(

k1+k2
k1

) . (22)

The t-integrand, I(t)uj(x,t)f is defined as:

I(t)uj(x,t)(f) =

Mj
1∑

k1=0

Mj
2∑

k2=1

[
k1∑
i1=0

k2−1∑
i2=0

Btuxi1 ti2 (−Dx)k1−i1(−Dt)
k2−i2−1

]
∂f

∂uxk1 tk2

, (23)

with combinatorial coefficient Bt = B(i1, i2, k1, k2) expressed as:

Bt =

(
i1+i2
i2

)(
k1+k2−i1−i2−1

k2−i2−1
)(

k1+k2
k1

) . (24)

Also M j
1 is the order of f in dependent variable uj with respect to x, and M j

2 is the order of f in dependent variable
uj with respect to t. The notation f [λu] means that in f one replaces u by λu and ux by λux, and so on for all
derivatives of u, that λ is an auxiliary parameter. All the results for homotopy operators and related conservation
laws are coming in Table 4.

Table 4: Second order local conservation laws

ξi It Ix Htf Hxf
1
u3

1
u2 −uxx − 1

2u2 −uxx
1
u2

1
u −2uuxx + u2x − 1

u
1
2u

2
x − uuxx

x
u3

x
u2 ux − xuxx − x

2u2 ux − xuxx
x2

2u3
x2

2u2 −u+ xux − x2

2 uxx − x2

4u2 −u+ xux − x2

2 uxx
**for the second order**

x
u3

x
u2 ux − xuxx − x

2u2 ux − xuxx
− 1

3u3 − 1
3u2

uxx

3
1

6u2
uxx

3
− 1

2u2 − 1
2u − 1

2u
2
x + uxxu

1
2u − 1

2u
2
x

x2

2u3
x2

2u2 −u+ xux − x2

2 uxx − x2

4u2 −u+ xux − x2

2 uxx

4.3. Conservation laws provided by Ibragimov’s method

First, the meaning of non-linear self-adjointness should be stated. Let us

F = ut − u3uxxx. (25)
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The formal Lagrangian for the equation (25) is given by

L = v
(
ut − u3uxxx

)
, (26)

where v = ϕ(u) is new dependent variables. The adjoint equation to system (25) is determined by,

F ∗ ≡ δL
δu

= 0, (27)

where δ/δu is the variational derivative:

δ

δu
=

∂

∂u
−Di

∂

∂ui
+DiDj

∂

∂uij
−DiDjDk

∂

∂uijk
+ · · · .

We will identify the first and the second independent variables with the time-like variable t and space-like variable
x, respectively then the total derivatives Di have the form,

Dt =
∂

∂t
+ ut

∂

∂u
+ utj

∂

∂uj
+ utjk

∂

∂ujk
+ · · · ,

Dx =
∂

∂t
+ ux

∂

∂u
+ uxj

∂

∂uj
+ uxjk

∂

∂ujk
+ · · · . (28)

Now the expanded form of the adjoint system (27) is

δL
δu

∣∣∣
u=v

=
1

u4
(
ut − u3uxxx

)
, (29)

thus, the new variable is

v =
1

u4
. (30)

It means that the system (25) is non-linearly self-adjoint, specifically it is quasi self-adjoint. Now, we obtain
conservation laws for the Dym equation via Ibragimov’s theorem [13].

Theorem 4.2. Every Lie point, Lie-backlund and non-local symmetry of Eq. (1) provides a conservation law for
Eq. (1) and the adjoint equation. Then the elements of conservation vector (C1, C2) are given by,

Ci = ξiL+Wα

[
∂L
∂uαi

−Dj

(
∂L
∂uαij

)
+DiDk

(
∂L
∂uαijk

)
− · · ·

]

+Dj(W
α)

[
∂L
∂uαij

−Dk

(
∂L
∂uαijk

)
+ · · ·

]

+Djk(Wα)

[
∂L
∂uαijk

−Ds

(
∂L

∂uαijks

)
+ · · ·

]
+ · · · , (31)

where Wα = ηα − ξjuαj .

The corresponding conserved components for Dym equation are

C1 = ξ1L+Wv,

C2 = ξ2L+W (DxDx(−u3v)) +Dx(W )(−Dx(−u3v)) +DxDx(W )(−u3v),

with W = η − ξ1ut − ξ2ux. After replacement (30) in (31) Table 5 is obtained.
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Table 5: Local Conservation Laws via Ibragimov’s Method

vector field C1 C2

X1
−ut

u4

2utu
2
x

u3 + uxuxt

u2 + uxxt

u −
utuxx

u2

X2
−ux

u4

2u3
x

u3 + uxxx

u

X3
1
u3 − xux

u4

2u2
x

u2 + 2uxx

u − 2xu3
x

u3 + xut

u4

X4
−1
3u3 − tut

u4

2u2
x

3u2 − uxx

3u +
2tu2

xut

u3 − tutuxx

u2 +
u2
x

3u2 + tuxtux

u2 + uxu
3 + tuxxt

u

X5
x
u3 − x2ux

2u4
2xuxx

u − 2ux

u −
2xu2

x

u2 +
x2u3

x

u3 +
x2uxxx

2u
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