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ABSTRACT: This paper considered the cost constrained vehicle scheduling problem
under the constraint that the total number of vehicles is known in advance. Each
depot has a different time processing cost. The goal of this problem is to find a feasible
minimum cost schedule for vehicles. A mathematical formulation of the problem is
developed and the complexity of the problem when there are more than two depots
is investigated. It is proved that in this case, the problem is NP-complete. Also, it is
showed that there is not any constant ratio approximation algorithm for the problem,
i.e., it is in the complexity class APX.
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1. Introduction

Planning a transportation network is an important task for managing transportation systems [12]. This task consists
of different steps. Step 1 is related to land use, transportation demand, etc. Having assessed a transportation
network and its properties, such as multiple type vehicle size, operating cost and public transportation demand,
the frequency setting for each line of different transportation modes is investigated in Step 2 [26]. Moreover,
designing a timetable for servicing the related demand and frequencies is the aim of Step 3 [15]. Transportation
scheduling provides a powerful approach for the problem of synchronizing different modes in Step 2 and Step 3.
This synchronization is a way to integrate different modes efficiently. In Step 4, multiple vehicle types are assigned
to trips and a schedule is created for each vehicle type. Crew assignment is carried out in Step 5. In this step,
drivers are assigned to vehicles based on vehicle scheduling and the number of drivers and their work times are
calculated as well.

This paper focues on vehicle scheduling problem, which is dealt with in Step 4 in which the designer seeks a
set of schedules for vehicles so that each trip is performed exactly once with minimum cost. The problem is easy if
there is only one depot for vehicles and efficient algorithms can be considered in this case, (see e.g. [10]).

When there are two or more depots for vehicles the problem is proved to be generally NP-hard ([3]). For this
reason, several researchers have applied heuristic algorithms to solve the problem efficiently. The problem is well
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studied in the literature, see e.g. surveys of [27], [7]. Researchers focus on both heuristic and exact algorithms. See
e.g. [5], [17], [30], [32], [33], [4], [11], [19] and [13] for exact algorithms and [3], [22], [18], [25] and [6] for heuristic
solution. Also, studying the complexity of scheduling problem is one of the topics of interest in the literature. See
e.g., [34] , [23], [20], [31] and [29].

In this paper, the vehicle scheduling problem is studied when there are several depots and each depot has a
different time processing cost. In addition, the total number of vehicles needed to perform all trips is known in
advance. In Section 2, a mathematical programming model for the vehicle scheduling problem is developed. Section
3 provides a complexity analysis of the problem when there are more than two depots. In this section, it is proved
that for this case, the problem is NP-complete. Also, it is shown that there is not any constant ratio approximation
algorithm for the problem, i.e., it is in the complexity class APX. Section 4 ends the paper with a brief conclusion
and future directions.

2. Vehicle schedule modeling

The objective of the problem is to create efficient schedules for vehicles so that they can perform all trips. A trip
is the transportation of passengers from a specific station to a destination, which should be performed in a certain
fixed time. Therefore, a trip i(i ∈ {1, 2, . . . , N}) has a fixed start time si and a fixed finish time fi. The start time
and finish time of the trips are predetermined. To perform, a vehicle should be located at the start location exactly
at the start time of that trip. Furthermore, the time needed to move from the destination location of trip i to the
start location of trip j is ti,j . This time can be considered as a set up time for performing trip j directly after trip
i which is sequence-dependent. Fig. (1) shows an instance of vehicle scheduling problem with 7 trips.

Figure 1: An instance of vehicle scheduling problem with 7 trips.

Assume that there are K depots with vehicles b ∈ {1, 2, . . . , l1, l1 + 1, . . . , l2, . . . , lk−1 + 1, . . . , lk, . . . , lk−1 +
1, . . . , lk} in which {lk−1 +1, . . . , lk} are the vehicles of depot k. Moreover, assume Ck is the time processing cost of
vehicles in depot k and each vehicle has a time limit T . Due to the time limitation of each vehicle and time interval
of each trip, some trips cannot be performed by the same vehicle. More precisely, if the start time of trip j is less
than fi + ti,j , trip j cannot be performed directly after trip i by the same vehicle. In addition, if the difference
between the finish time of trip j and the start time of trip i is less that T , trips i and j cannot be performed by
the same vehicle due to the time limitation of the vehicle . For trip i , the set of trips which cannot be performed
with i by the same vehicle, is denoted by Qi and defined as follows:

Qi = {j| sj < fi + ti,j}. (1)

The total number of vehicles needed for performing all trips is known in advance and is equal to B. The problem
should select B1 < l1 vehicles of depot 1, B2 < l2− l1 vehicles of depot 2, · · · , and Bk < lk − lk−1 vehicles of depot
K so that B = B1 +B2 + · · ·+Bk and all trips are performed.

For every depot k, a network Gk = (Vk, Ek) is considered so that Vk contains one node for every trip and two
nodes ok and dk for depot k i.e. Vk = {ok, 1, 2, . . . , N, dk} and

Ek = {(ok, j)| j = 1, . . . , N} ∪ {(j, dk)| j = 1, . . . , N} ∪ {(i, j)| i = 1, . . . , N, j = 1, . . . , N, j 6∈ Qi}.

See Fig. (2) for the network with 7 trips.
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Figure 2: network for depot k.

For each arc (i, j) ∈ Ak, let Xk
i,j be the flow of commodity k through arc (i, j). Also the variable Bk is defined

as the number of vehicles from depot k. Now the model of vehicle scheduling problem can be stated as the following
model.

min z =

K∑
k=1

Ck(
∑

(i,j)∈Ek

ti,jx
k
i,j +

N∑
i=1

(fi − si)
∑

(i,j)∈Ek

xki,j), (2)

s.t.

∑K
k=1

∑
(i,j)∈Ek

xk
i,j = 1 ∀i = 1, . . . , N,∑

{j|(ok,j)∈Ek}
xk
okj

= Bk ∀k = 1, . . . ,K,∑
{j|(i,j)∈Ek}

xk
i,j −

∑
{j|(i,j)∈Ek}

xk
j,i = 0, ∀i = 1, . . . , N, ,

B1 +B2 + · · ·+BK = B,

z ≤ C,

xk
i,j ∈ {0, 1}, ∀(i, j) ∈ Ek.

(3)

Where C̄ is the upper bound of the total cost and detemined by the manager. The objective function minimizes
transportation cost which is stated as the total transportation time between trips and trip times performed by
each depot multiplied by depot cost. The first constraint ensures that each trip is assigned to exactly one depot.
The second constraint stipulates that the number of vehicles used from depot k should be equal to Bk.The third
constraint deals with flow conservation constraint and the forth one ensures that the total number of vehicles is
equal to B.The fifth constraint is the cost constraint on the total cost. Finally, the binary restriction is applied in
the last constraint.

3. The complexity of the problem for more than two depots

In this section, we show that the cost constrained vehicle scheduling problem is NP-complete. To prove this, we
first in the next theorem show that there is not any constant factor approximation algorithm for this problem when
the number of depots is more than two.

Theorem 3.1. For r > 1 (r is a constant), assuming P 6= NP , there is no polynomial time approximation
algorithm with factor r for the cost constrained vehicle scheduling problem when the number of depots is at least 3.

Proof. The proof is by contradiction. Suppose that for some r > 1, there is a polynomial time approximation
algorithm A for the cost constraint vehicle scheduling problem with factor r , i.e. CA/C

∗ 6 r where CA is the cost
returned by the algorithm A and C∗ is the optimal solution. We will show how to use the algorithm A to solve the
Numerical 3-Dimensional Matching (N3DM) problem in polynomial time. Since N3DM problem is NP-complete
[16] our theorem follows. �

First we recall the definition of N3DM problem [16].

111



Malihe Niksirat et al., AUT J. Math. Com., 2(1) (2021) 109-115, DOI:10.22060/ajmc.2021.19454.1046

Definition 3.2. Given the integers t, d and 0 < ai, bi, ci < d for i = 1, 2, . . . , t , satisfying the following relation:

t∑
i=1

(ai + bi + ci) = td (4)

Are there permutations ρ and σ so that ai + bρ(i) + cσ(i) = d, i = 1, 2, . . . , t?

Consider a particular instance of N3DM. We construct an instance of the cost constrained vehicle scheduling problem
as follows. Define

U = 49dt4r2 (5)

V = U − 7dt2r = 49dt4r2 − 7dt2r (6)

W = U + 7dt2r + 3d = 49dt4r2 + 7dt2r + 3d (7)

Z = W + U + d = 98dt4r2 + 7dt2r + 4d (8)

Moreover, let K = 3, C1 = (14dt3 + 14dt2 − 5dt/r + 5d/r)/Z,C2 = 1/r and C3 = 7t2. It can be easily verified
that 0 < C1 < C2 < C3. Assume C = 49dt4, B1 = t, B2 = t2 − t and B3 = t2. In this instance of the cost
constrained vehicle scheduling problem, the total number of vehicles is B = B1 +B2 +B3 = 2t2. Next, we choose
t2 + 2t distinct rational numbers Ei, Fj and Xi,j for i, j = 1, 2, . . . , t in (U,U + 3d) so that:

U < Fj < U + d < EJ < U + 2d < Xi,j < U + 3d (9)

We define | T |= 6t2 + t as the number of trips. The start time and finish time pairs (si, fi) of these trips are
as follows:
(0, Ei) for i = 1, . . . , t,
(t− 1)times(V, Fj) for j = 1, . . . , t,
(Xi,j ,W + ai + bj) for i, j = 1, . . . , t,
(t− 1)times(U,Ei) for i = 1, . . . , t,
(Xi,j , U + 3d) for i, j = 1, . . . , t,
(Ei, Xi,j) for i, j = 1, . . . , t,
(Fj , Xi,j) for i, j = 1, . . . , t,
(W + d− ck, Z) for k = 1, . . . , t,
(U,Fj) for j = 1, . . . , t.
Also we set ti,j = 0,∀i, j ∈ T . In this way, an instance of the cost constraint vehicle scheduling problem is
constructed in polynomial time. In what follows we show that if the algorithm A is applied to solve this problem,
then CA 6 rC̄ for all r > 1 , if and only if the corresponding instance of N3DM problem has a solution. To show
this we prove the following lemmas:

Theorem 3.3. Trips (0, Ei) for i = 1, . . . , t can only be assigned to depot 1.

Proof. Suppose a trip (0, Ei) is assigned to another depot. In this case the unit time processing cost for this trip
is at least 1/r , thus the processing time of this trip is Ei > U +d > U = 49dt4r = rC̄ , which is a contradiction. �

Theorem 3.4. Trips (t− 1)times(V, Fj)forj = 1, . . . , t can only be assigned to depot 2.

Proof. Due to Lemma 3.3, trips (t− 1)times(V, Fj)forj = 1, . . . , t cannot be assigned to depot 1. The rest of the
proof is similar to the proof of lemma 3.3. �

Theorem 3.5. Trips (t − 1)times(U,Ei) for i = 1, . . . , t and (U,Fj) fori = 1, . . . , t can only be assigned to depot
3.

Proof. The proof is trivial from the result of Lemma 3.3 and Lemma 3.4. �

Theorem 3.6. Trips (W + d− ck, Z) for k = 1, . . . , t can only be assigned to depot 1.

Proof. The proof is similar to the proof of Lemma 3.3. �
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Theorem 3.7. Trips (Xi,j ,W + ai + bj) for i, j = 1, . . . , t can not be assigned to depot 3. Furthermore, there is
no idle time for each vehicles from depot 1 and depot 2 during the time [U + 3d,W ].

Proof. The first part of the proof is similar to the proof of Lemma 3.3. For the second part, it is obvious that all
t2 trips start before time U + 3d and end after time W . �

Theorem 3.8. Trips (Xi,j , U + 3d)fori, j = 1, . . . , t can only be assigned to depot 3.

Proof. The proof is the immediate result of Lemma 3.7. �

Theorem 3.9. There is no idle time for each of 2t2 vehicles during the time interval [U,U + 3d).

Proof. The proof is obvious from the definition of the trips. �

The rest of the proof for theorem 3.1: Now we show that there is no idle time for the vehicles of depot 1 during
the time interval [W,W + d] and that the instance of N3DM problem has a solution. From the above lemmas
we see that trips (0, Ei) for i = 1, . . . , t, (Ei, Xi,j) for i, j = 1, . . . , t, (Xi,j ,W + ai + bj) for i, j = 1, . . . , t, and
(W + d − ck, Z)fori, k = 1, . . . , t in which each i, j and k occurs exactly once, should be assigned only to depot
1. Moreover, the trips (t − 1)times(V, Fj) for j = 1, . . . , t and (Xi,j ,W + ai + bj) for i, j = 1, . . . , t in which each
j(j = 1, . . . , t) occurs exactly (t− 1) times must be assigned to depot 2. From the previous lemmas it follows that
trips (t − 1)times(U,Ei) for i = 1, . . . , t, (Ei, Xi,j) for i, j = 1, . . . , t, and (Xi,j , U + 3d) for i, j = 1, . . . , t, where
each i(i = 1, . . . , t) occurs exactly (t− 1) times, must be assigned to depot 3. Also the trips (U,Fj) and (Fj , Xi,j)

for j = 1, . . . , t should be assigned to depot 3. Finally from the fact that
∑t
i=1(ai + bi + ci) = td and each i, j and

k occurs exactly once for trips (Xi,j ,W + ai + bj) and (W + d− ck, Z) assigned to depot 1, it can be cocluded that
there is no idle time for each of depot 1 vehicles durig time interval [W,W + d]. Thus W + ai + bj = W + d− ck. If
we define ρ(i) = j and σ(i) = k, then ai + bρ(i) + cσ(i) = d for i = 1, . . . , t and the instance of N3DM problem has
a solution.

Now if the instance of N3DM problem has a solution, the total processing cost of the trip assignment is as
follows:

CA = tZ(14dt3 + 14dt2 − 5dt/r + 5d/r)/Z +

+(t2 − t)(W + 2dV )/r + 21dt4

= 49dt4

= C̄

≤ rC̄. (10)

It follows that algorithm A can solve N3DM problem in polynomial time which is a contradiction.

Corollary 3.10. The cost constraint vehicle scheduling problem is NP-complete.

Proof. Follow the proof of theorem 3.1 by setting r = 1. �

4. Conclusion

This paper investigated the cost constrained vehicle scheduling problem in transportation networks. It is considered
a case in which there are several depots each of which has a different cost and the total number of vehicles is
predetermined. A mathematical integer programming model for the problem is developed. Then, it is investigated
the complexity of the problem for the case in which there are more than two depots. It is proved that when there are
at least three depots, the problem is Np-complete. Moreover, there is not an approximation algorithm of constant
ratio for this problem, i.e. it is in the complexity class APX. In the future work, the authors plan to investigate
the vehicle scheduling problem in multimodal transportation networks.
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