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ABSTRACT: The target of this paper is to study N(k)-contact metric manifolds
with some types of conformal vector fields like φ-holomorphic planar conformal vector
fields and Ricci biconformal vector fields. We also characterize N(k)-contact metric
manifolds allowing conformal Ricci almost soliton. Obtained results are supported by
examples.
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1. Introduction

Some intrinsic properties of contact metric manifolds can be explained beautifully by the existence of conformal
vector fields on a contact metric manifold. For example, it is known that [26] if an m dimensional Riemannian

manifold admits a maximal, i.e., (m+1)(m+2)
2 -parameter group of conformal motions, then it is conformally flat.

It is also known that [15] a conformally flat Sasakian manifold is of constant curvature 1. Again, it is to be
noted that a complete and connected Sasakian manifold of dimension greater than three is isometric to sphere
if it admits a conformal motion. This result was determined by Okumura in 1962 [16]. Later study of contact
manifolds admitting conformal motions was extended to N(k)-contact metric manifolds by Sharma [20]. Sharma
also introduced the notion of holomorphic planar conformal vector fields in Hermitian manifolds [21]. Conformal
vector fields are alternatively known as conformal motions or conformal transformations in differential geometry of
contact manifolds ([22], [23], [24]). Planar conformal vector fields has also been studied in ([11], [21]).

We say that a vector field V on a contact manifold M is an infinitesimal contact transformation if £V ω = fω
for a function f , where £ denote the Lie derivative operator and ω the contact form of the manifold. We also say
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that a vector field V on M is an automorphism of the contact metric structure if V leaves all the structure tensors
of the manifold invariant [25].

In 1992, Baikoussis, Blair and Koufogiorgos [2] introduced a new type of contact metric manifolds known as
N(k)-contact metric manifolds. N(k)-contact metric manifolds are such manifolds whose characteristic vector field
ρ belongs to k-nullity distribution. Further properties of N(k)-contact manifolds were determined by Blair et al.
[5]. More characterizations of N(k)-contact metric manifolds can be found in the papers ([7],[8],[13],[17]).

In the present paper, we would like to study N(k)-contact metric manifolds admitting planar conformal vector
fields.

The notion of biconformal vector fields has been introduced in [1]. In that paper, the authors have also given
the geometric interpretation of such vector fields. In the present paper we have introduced a new notion namely
Ricci biconformal vector fields.

The theory of Ricci flow was developed by Hamilton [12] and it was applied by Perelman [18] to prove the
century long well known open problem Poincare conjecture. After these works a major thrust has been seen in the
study of Ricci flow. A Ricci soliton is a fixed solution of Hamilton’s Ricci flow equation up to diffeomorphism and
scaling. Pigola et al. [19] generalized Ricci soliton to almost Ricci soliton. The notion of conformal Ricci solitons
can be found in the papers ([3], [10],[14]). For details about Ricci flow we refer [6].

The present paper is organized as follows:
After the introduction in Section 1, we recall required preliminaries in Section 2. Section 3 contains the study

of φ-holomorphic planar conformal vector fields on N(k)-contact metric manifolds. In Section 4, we introduce
the definition of Ricci biconformal vector fields and study them on N(k)-contact metric manifolds. Section 5 is
devoted to study conformal Ricci almost soliton on N(k)-contact metric manifolds. Finally, we give an example of
a three-dimensional N(k)-contact metric manifold to verify some results.

2. Preliminaries

An odd dimensional differentiable manifold M is called an almost contact manifold [4] if it satisfies

φ2U = −U + ω(U)ρ, ω(ρ) = 1, (1)

where φ is a (1,1) tensor field, ρ is a unit vector field, ω is a 1-form and U is a smooth vector field on the manifold.
Such a manifold is called almost contact metric manifold if there exists a Riemannian metric g such that

g(φU, φV ) = g(U, V )− ω(U)ω(V ) (2)

for any smooth vector field U, V on M .
An almost contact metric manifold is called contact metric manifold when

dω(U, V ) = g(U, φV ) (3)

is satisfied.
An almost contact metric structure is said to be normal if the induced almost complex structure J on the product
manifold M × R defined by

J(U, f
d

dt
) = (φU − fρ, ω(U)

d

dt
)

is integrable, where t is the coordinate of R and f is a smooth function on M × R.
A normal contact metric manifold is called Sasakian manifold. If the characteristic vector field ρ is Killing, the
manifold is known as K-contact manifold. Every Sasakian manifold is K-contact but the converse is true only for
three-dimension.
It is familiar that the tangent sphere bundle of a flat Riemannian manifold allows a contact metric structure
satisfying R(U, V )ρ = 0. On the other hand for Sasakian case

R(U, V )ρ = ω(V )U − ω(U)V,

where R is the Riemann curvature of the manifold. As a generalization of the above cases, Baikoussis et al. [2]
introduced the notion of contact manifolds with ρ belonging to k-nullity distribution. Contact manifolds with ρ
belonging to k-nullity distribution is known as N(k)-contact metric manifolds.
On a contact metric manifold, the (1,1)-tensor field h is defined as h = 1

2£ρφ, where £ denotes the Lie-derivative.
The tensor field h satisfies

hφ = −φh, trace(h) = trace(φh) = 0, hρ = 0. (4)
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Also on a contact metric manifold, we know

∇Uρ = −φU − φhU, (5)

where ∇ is the Levi-Civita connection on M .
The k-nullity distribution on a Riemannian manifold is given by

N(k) = {W ∈ TM : R(U, V )W = k[g(V,W )U − g(U,W )V ]},

k being a real number and TM is the set of all vector fields on M .

For an N(k)-contact metric manifold, we know

h2 = (k − 1)φ2, (6)

(∇Uω)V = g(U + hU, φV ), (7)

(∇Uφ)V = g(U + hU, V )ρ− ω(V )(U + hU), (8)

S(U, ρ) = 2nkω(U). (9)

Again on a (2n + 1)-dimensional N(k)-contact metric manifold the Ricci tensor S and the Riemannian curvature
R are given by

S(U, V ) = 2(n− 1)g(U, V ) + 2(n− 1)g(hU, V )

+[2nk − 2(n− 1)]ω(U)ω(V ), (10)

R(U, V )ρ = k[ω(V )U − ω(U)V ]. (11)

In a three-dimensional Riemannian manifold, we have

R(U, V )W = g(V,W )QU − g(U,W )QV + S(V,W )U − S(U,W )V

−r
2

[g(V,W )U − g(U,W )V ], (12)

where Q is the Ricci operator and r is the scalar curvature of the manifold. Putting W = ρ in (12) and using (9)
and (11), we get

k[ω(V )U − ω(U)V ] = ω(V )QU − ω(U)QV

+(2k − r

2
)[ω(V )U − ω(U)V ]. (13)

Replacing V by ρ in the above equation, we get

QU = [
r

2
− k]U + [3k − r

2
]ω(U)ρ. (14)

From above it also follows that
Qρ = 2kρ. (15)

3. N(k)-contact metric manifold with φ-holomorphic planar conformal vector fields

Definition 3.1. Let (M, g) be a (2n + 1)-dimensional N(k)-contact metric manifold. A smooth vector field X of
M is called a conformal vector field or conformal motion if

£Xg = 2fg (16)

for a smooth function f on M . In view of Koszul’s formula, a vector field X on M is called conformal if

∇UX = fU + φU (17)

for a smooth function f on M .
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Suppose the characteristic vector field ρ of an N(k)-contact metric manifold is conformal. Then in view of (5) and
(17)

fU + φU = −φU − φhU.
For U = ρ the above equation gives f = 0. Hence £ρg = 0. Consequently, ρ is Killing. Thus, we get

Proposition 3.2. If the characteristic vector field ρ of an N(k)-contact metric manifold is conformal, then the
manifold is K-contact.

Remark 3.3. In [20], N(k)-contact metric manifolds admitting conformal vector fields was characterized for di-
mension greater than three and it was proved that if an N(k)-contact metric manifold of dimension greater than
three admits a conformal vector field X, then the manifold is either Sasakian or X is Killing. If, in particular,
X = ρ then by Proposition 3.1, the result is true for any dimension.

Since any three-dimensional K-contact manifold is Sasakian, by the above discussion and Proposition 3.1, we can
state the following:

Corollary 3.4. If the characteristic vector field ρ of an N(k)-contact metric manifold is conformal, then the
manifold is either Sasakian or K-contact.

Definition 3.5. A vector field X on an N(k)-contact metric manifold will be called φ-holomorphic planar conformal
vector field if [21]

∇UX = lU +mφU (18)

for two smooth functions l and m on M and any smooth vector field U on M .

If m = 1, X becomes conformal.
Suppose an N(k)-contact metric manifold admits a φ-holomorphic planar conformal vector field X. Now we

shall discuss the following two cases:

(i) φX = 0
(ii) φX 6= 0.

Case i: Suppose an N(k)-contact metric manifold admits a conformal vector field X such that φX = 0. Then we
have

X = ω(X)ρ. (19)

Differentiating the above equation with respect to U and using (5),(7) and (18), we get

lU +mφU = g(U + hU, φX)ρ− ω(X)(φU + φhU).

Since φX = 0, the above equation takes the form

lU +mφU = −ω(X)(φU + φhU). (20)

By inner product with hU , we get from above

lg(U, hU) +mg(φU, hU) = −ω(X)g(φU, hU). (21)

Taking inner product in both sides of (20) with U , we have

lg(U,U) = −ω(X)g(φhU,U). (22)

From (19), we observe that ω(X) is non-zero. So From the above equation, we note that

g(hU, φU) =
l

ω(X)
g(U,U). (23)

Using (23) in (21), we see that

lg(U, hU) +
ml

ω(X)
g(U,U) + lg(U,U) = 0. (24)

From (24), we infer that l = 0. If not, from (24) , we observe that

hU = −(
m

ω(X)
+ 1)U.

Having taken inner product with φU , we conclude from above g(hU, φU) = 0. Hence, by (22), g(U,U) = 0, a
contradiction. Thus we obtain the following:
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Lemma 3.6. If an N(k)-contact metric manifold admits a φ-holomorphic planar conformal vector field X given
by ∇UX = lU +mφU such that φX = 0, then l = 0.

In view of (23)

g(φhU,U) = − l

ω(X)
g(U,U).

The above equation gives φhU = − l
ω(X)U. Thus, by the above lemma, φhU = 0. Consequently, hU = 0, where U

is arbitrary. Hence h = 0. It is known that [20], if in an N(k)-contact metric manifold h = 0, then the manifold is
K-contact.
Thus, we can state the following:

Theorem 3.7. If an N(k)-contact metric manifold admits a φ-holomorphic planar conformal vector field X such
that φX = 0, then the manifold is K-contact.

Case ii: Let us consider a φ-holomorphic conformal vector field on an N(k)-contact metric manifold with φX 6= 0.
Then in view of (3.3), we get after simplification

R(U, V )X = (Ul)V − (V l)U + (Um)φV − (V m)φU

+m[(∇Uφ)V − (∇V φ)U ].

By virtue of (8), the above equation gives

R(U, V )X = (Ul)V − (V l)U + (Um)φV − (V m)φU

+m[ω(U)(V + hV )− ω(V )(U + hU)]. (25)

Replacing U by φU and V by φV in (25), we have

R(φU, φV )X = (φUl)φV − (φV l)φU − (φUm)V + (φUm)ω(V )ρ

+(φV m)U − (φV m)ω(U)ρ. (26)

Adding (25) and (26), we get

R(U, V )X +R(φU, φV )X = (Ul)V − (V l)U + (Um)φV − (V m)φU

+m[ω(U)(V + hV )− ω(V )(U + hU)]

+(φUl)φV − (φV l)φU − (φUm)V

+(φUm)ω(V )ρ+ (φV m)U − (φV m)ω(U)ρ.

By inner product with X, we get

(Ul)g(V,X)− (V l)g(U,X) + (Um)g(φV,X)− (V m)g(φU,X)

+m[ω(U)g(V + hV,X)− ω(V )g(U + hU,X)] + (φUl)g(φV,X)

−(φV l)g(φU,X)− (φUm)g(V,X) + (φUm)ω(V )ω(X)

+(φV m)g(U,X)− (φV m)ω(U)ω(X) = 0. (27)

Replacing U by φU and V by φV , we get from the above equation

(φUl)g(φV,X)− (φV l)g(φU,X)

+(φUm)g(φ2V,X)− (φV m)g(φ2U,X)

+(φ2Ul)g(φ2V,X)− (φ2V l)g(φ2U,X)

−(φ2Um)g(φV,X) + (φ2V m)g(φU,X) = 0.

Putting φV = X in the above equation, we have

(φUl)g(X,X)− (Xl)g(φU,X)− (Xm)g(φ2U,X)

−(φXl)g(φ2U,X)− (φ2Um)g(X,X) + (φXm)g(φU,X) = 0. (28)

In (27) putting U = ρ, we get

(ρl)g(V,X)− (V l)ω(X) + (ρm)g(φV,X)

+m[g(V + hV,X)− ω(V )ω(X)] = 0.
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By the substitution V = φX in the above equation, we infer that

(ρm)g(φX, φX)−mg(φX, hX) = 0. (29)

In (27) taking V = ρ, we see that

(Ul)ω(X)− (ρl)g(U,X)− (ρm)g(φU,X)

+m[ω(U)ω(X)− g(U + hU,X)] = 0.

Using U = φX in the above equation, we get

(φXl)ω(X) + (ρm)g(φX, φX)−mg(φX, hX) = 0. (30)

By virtue of (29) and (30), we get
(φXl)ω(X) = 0.

If X is not orthogonal to ρ, we get from the above

φXl = 0. (31)

Next, suppose X is orthogonal to ρ. Then putting U = X in (28), we have

φXl +Xm = 0. (32)

Thus, we are in a position to state the following:

Lemma 3.8. If an N(k)-contact metric manifold admits a non-null φ-holomorphic planar conformal vector field
X described by ∇UX = lU +mφU , then
(i) φXl = 0, when X is not orthogonal to ρ
(ii) φXl +Xm = 0, when X is orthogonal to ρ.
Here l and m are certain smooth functions.

Suppose X is not orthogonal to ρ. So, φXl = 0. This means

g(gradl, φX) = 0. (33)

Since g is metric connection, we know
(∇W g)(U, V ) = 0

for any U and V .
Taking U = gradl and V = φX, we get

∇W g(gradl, φX)− g(∇W gradl, φX)− g(gradl,∇WφX) = 0. (34)

By virtue of (33) and (34), we infer

g(∇W gradl, φX) + g(gradl, (∇Wφ)X) + g(gradl, φ(∇WX)) = 0. (35)

Putting W = φX and using (8) and (18), we get

g(∇φXgradl, φX) + g(hφX,X)(ρl) + ω(X)φXl

+ω(X)hφXl − φ(lφX +mφ2X)l = 0. (36)

Suppose gradl is constant. Then

g(∇φXgradl, φX) = 0. (37)

Using (37) in (36), we infer
g(hφX,X) = 0.

Since X is non-zero and not necessarily ρ, hφX = 0. So, h = 0.

From [20], it is known that if in an N(k)-contact metric manifold h = 0, then the manifold is K-contact. So,
in this case, the manifold is K-contact.

Thus, we are in a position to state the following:

66



U. Chand De et al., AUT J. Math. Comput., 2(1) (2021) 61-71, DOI:10.22060/ajmc.2021.19220.1043

Theorem 3.9. If an N(k) -contact metric manifold admits a φ-holomorphic planar conformal vector field X given
by ∇UX = lX + mφX such that φX 6= 0 and X is not orthogonal to ρ, then the manifold is K-contact, provided
gradl is constant.

On the remaining case φXl + Xm = 0 and X is orthogonal to ρ. Proceeding in the similar way, we get h = 0,
provided gradl + φgradm is constant.
Hence, we are in a position to state the following:

Theorem 3.10. If an N(k)-contact metric manifold admits a φ-holomorphic planar conformal vector field X given
by ∇UX = lX + mφX such that φX 6= 0 and X is orthogonal to ρ, then the manifold is K-contact, provided
gradl + φgradm is constant.

4. N(k)-contact metric manifold admitting Ricci biconformal vector fields

In [1], the authors have defined biconformal vector fields using two (0,2) tensor fields. They also have given the
geometric importance of the study of such vector fields on a Riemannian manifold. Here, we define Ricci biconformal
vector fields by taking the metric tensor field g and the Ricci tensor field S as the two (0,2) tensor fields. Let us
introduce the following:

Definition 4.1. A vector field X on a Riemannian manifold will be called Ricci biconformal vector field if it satisfies
the following equations

(£Xg)(U, V ) = αg(U, V ) + βS(U, V ) (38)

and
(£XS)(U, V ) = αS(U, V ) + βg(U, V ) (39)

for arbitrary non-zero smooth functions α and β.

Let us consider a Riemannian manifold with Ricci biconformal vector field.
Replacing U by QU in (38), and subtracting it from (4.2) we get

g(£XQU, V ) + g(QU,£XV )− S(£XU, V )− S(U,£XV ) = βg(U −Q2U, V ). (40)

Putting V = U in the above equation, we get

U −Q2U = (£XQ)U. (41)

Thus, we are in a position to state the following:

Lemma 4.2. Let X be a biconformal vector field in a Riemannian manifold. Then the operator £X annihilates
the Ricci operator Q if and only if the square of the Ricci operator is identity operator.

Let us consider a three-dimensional N(k)-contact metric manifold. Then in view of (14) and (15)

(£XQ)ρ = (3k − r

2
)£Xρ. (42)

In view of (41) and (42), we conclude the following:

Lemma 4.3. If a three-dimensional N(k)-contact metric manifold admits a Ricci biconformal vector field X then
Q2ρ = ρ if and only if £Xρ = 0 or r = 6k, where r is the scalar curvature of the manifold and Q is the Ricci
operator.

Suppose £Xρ = 0 or r = 6k. Then by virtue of (2.15), (4k2 − 1)ρ = 0. Which yields k = ± 1
2 . The above

situation leads us to state the following:

Theorem 4.4. If a three-dimensional N(k)-contact metric manifold admits Ricci biconformal vector field X such
that £Xρ = 0 or r = 6k, then k = ± 1

2 , where r is the scalar curvature of the manifold.

Since every three-dimensional K-contact manifold is Sasakian, as direct consequences of the above theorem, we
note the following:

Corollary 4.5. If a three-dimensional N(k)-contact metric manifold admits a Ricci biconformal vector field X
such that £Xρ = 0 or r = 6k, then it is not K-contact and hence not Sasakian, where r is the scalar curvature of
the manifold.

Corollary 4.6. No three-dimensional Sasakian manifold admits Ricci biconformal vector field X such that £Xρ = 0
or r = 6k, where r is the scalar curvature of the manifold.
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5. Conformal Ricci almost soliton

Definition 5.1. The metric of an N(k)-contact metric manifold will be called conformal Ricci almost soliton [10]
if it satisfies

(£Xg)(U, V ) + 2S(U, V ) = [2λ− (p+
2

2n+ 1
)]g(U, V ), (43)

where λ and p are smooth functions called soliton functions.

Let us consider an N(k)-contact metric manifold admits conformal Ricci almost soliton. In view of (10) after a
straight forward computation, we get the following:

Lemma 5.2. In an N(k)-contact metric manifold, the following holds:

(∇US)(V,W ) + (∇V S)(W,U)− (∇WS)(U, V )

= 2(n− 1)[g(∇Uh)V,W ) + g(∇V h)W,U)− g(∇Wh)U, V )]

+2[2nk − 2(n− 1)][g(V, φW )ω(U) + g(hU, φV )ω(W )

+g(U, φW )ω(V )]. (44)

Differentiating (43) with respect to W , we get

(∇W£Xg)(U, V ) = [2dλ(W )− dp(W )]g(U, V )− 2(∇WS)(U, V ). (45)

By a well known computation formula

g((£X∇)(U, V ),W ) =
1

2
(∇U£Xg)(V,W ) +

1

2
(∇V £Xg)(U,W )

−1

2
(∇W£Xg)(U, V ).

Using (45) in the above equation, we have

g((£X∇)(U, V ),W ) = dλ(U)g(V,W ) + dλ(V )g(U,W )− dλ(W )g(U, V )

+
1

2
[dp(U)g(V,W ) + dp(V )g(U,W )− dp(W )g(U, V )]

− [(∇US)(V,W ) + (∇V S)(U,W )− (∇WS)(U, V )]. (46)

Using Lemma 5.1 in the above equation, we get

g((£X∇)(U, V ),W ) = dλ(U)g(V,W ) + dλ(V )g(U,W )− dλ(W )g(U, V )

+
1

2
[dp(U)g(V,W ) + dp(V )g(U,W )− dp(W )g(U, V )]

− 2(n− 1)[g(∇Uh)V,W ) + g(∇V h)W,U)− g(∇Wh)U, V )]

− 2[2nk − 2(n− 1)][g(V, φW )ω(U) + g(hU, φV )ω(W )

+ g(U, φW )ω(V )]. (47)

Putting V = ρ and n = 1 in the above equation, we get for a three-dimensional N(k)-contact metric manifold

g((£X∇)(U, ρ),W ) = dλ(U)ω(W ) + dλ(ρ)g(U,W )− dλ(W )ω(U)

+
1

2
[dp(U)ω(W ) + dp(ρ)g(U,W )− dp(W )ω(U)]

− 4kg(U, φW ). (48)

Putting W = U in the above equation, after a straight forward computation, we get

g((£X∇)(U, ρ), U) = g(gradλ+
gradp

2
, ρ)g(U,U). (49)

If gradλ+ gradp
2 is orthogonal to ρ, then we have

(£X∇)(U, ρ) = 0. (50)
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Differentiating (50), we get
∇V (£X∇)(U, ρ) = 0.

The above equation implies

(∇V £X∇)(U, ρ) + (£X∇)(∇V U, ρ) + (£X∇)(U,∇V ρ) = 0. (51)

Using (5) in the above equation, we get

(∇V £X∇)(U, ρ) = (£X∇)(U, φV ) + (£X∇)(U, φhV ). (52)

Now, we state the following:

Lemma 5.3. If a three-dimensional N(k)-contact metric manifold admits Ricci almost soliton and gradλ + gradp
2

is orthogonal to ρ, then

(∇V £X∇)(U, ρ) = (£X∇)(U, φV ) + (£X∇)(U, φhV ).

By a well known computation, we get

(£XR)(U, V )W = (∇U£X∇)(V,W )− (∇V £X∇)(U,W ).

Putting V = W = ρ and using Lemma 5.2, we get

(£XR)(U, ρ)ρ = 0. (53)

On the other hand by direct computation from (11), we get

(£XR)(U, ρ)ρ = £X(k[U − ω(U)]ρ)− k[£XU − ω(£XU)ρ]

−k[ω(£Xρ)U − ω(U)£Xρ]−R(U, ρ)£Xρ. (54)

Comparing (53) and (54), we get

k(£Xω(U))ρ+ k(ω(£Xρ)U − ω(U)£Xρ)−R(U, ρ)£Xρ = 0.

By inner product and using (11), we get

k(£Xω)U − kg(U − ω(U)ρ,£Xρ) = 0.

For U = ρ, the above equation gives k = 0.
It is known that [20] a three-dimensional N(k)-contact metric manifold with k = 0 is flat. Thus we are in a

position to state the following:

Theorem 5.4. If a three-dimensional N(k)-contact metric manifold admits Ricci almost soliton with soliton func-
tions λ and p such that gradλ+ gradp

2 is orthogonal to ρ, then the manifold is flat.

6. Example

Example of a three-dimensional N(k)-contact metric manifold has been given in the paper of Sharma [20]. For
the purpose of illustration, we use the example here.

Let M = {(x, y, z) ∈ R3, (x, y, z) 6= (0, 0, 0)}, where (x, y, z) are the standard coordinates of R3. Let us consider
three linearly independent vector fields e1, e2, e3 such that

[e1, e2] = (1 + a)e3, [e2, e3] = 2e1 and [e3, e1] = (1− a)e2,

where a = ±
√

1− k, a=constant.
Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1

and
g(e1, e3) = g(e2, e3) = g(e1, e2) = 0.
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Let ω be a 1-form defined by ω(Z) = g(Z, e1) for any vector field Z on M . Let φ be (1,1) tensor field defined by

φe1 = 0, φe2 = e3, φe3 = −e2.

Then M is an N(k)-contact metric manifold [20] for k = (1− a2). Using Koszul’s formula we have

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = −(1 + a)e3, ∇e2e2 = 0, ∇e2e3 = (1 + a)e1,

∇e3e1 = (1− a)e2, ∇e3e2 = −(1− a)e1, ∇e3e3 = 0.

We can also calculate the components of the Ricci tensor as

S(e1, e1) = 2(1− a2), S(e2, e2) = 0, S(e3, e3) = 0. (55)

If we take a = 0, we note that X = e1 is a φ-holomorphic planar conformal vector field for l = 0 and m = −1 such
that φe1 = 0. Hence the example fits for Lemma 3.1. Then for a = 0, k = 1 and the manifold is K-contact and
hence Sasakian. This agrees with Theorem 3.1. The vector fields e2 and e3 are not φ-holomorphic planar conformal.

For a = 0, the vector field e2 is not Ricci biconformal. We see that if e2 would Ricci biconformal, then

(£e2g)(e1, e1) = αg(e1, e1) + βS(e1, e1)

and
(£e2S)(e1, e1) = αS(e1, e1) + βg(e1, e1)

gives α = 0 = β but
(£e2g)(e1, e3) = αg(e1, e3) + βS(e1, e3)

gives α = 1. So e2 is not Ricci biconformal. Similarly e3 and e1 are not Ricci biconformal. This validates Corollary
4.1 and Corollary 4.2.

For a = ±1, the manifold is conformal Ricci almost soliton for λ = p
2 + 2

3 − a
2. In that case r = 0 and the

manifold is flat. This argues that Theorem 5.1 is authentic.
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