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Estimation of the parameter of Lévy distribution using ranked set sampling
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ABSTRACT: Ranked set sampling is a statistical technique for data collection
that generally leads to more efficient estimators than competitors based on simple
random sampling. In this paper, we consider estimation of scale parameter of Lévy
distribution using a ranked set sample. We derive the best linear unbiased estimator
and its variance, based on a ranked set sample. Also we compare numerically, variance
of this estimator with mean square error of the maximum likelihood, a median based
estimator and an estimator based on Laplace transform. It turns out that the best
linear unbiased estimator based on ranked set sampling is more efficient than other
mentioned estimators.
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1. Introduction

Lévy distribution is an interesting distribution and play a very important rule in modeling many types of physical
and economic systems. For example, hitting times for a Brownian motion yielding a Lévy distribution ([17]).
In economics, Lévy distribution is appropriate for modeling financial data ([14]). For other applications of Lévy
distribution, see [12] and references therein.

If Φ(x) denotes the standard normal distribution function, then

F (x, γ) = 2
{

1− Φ
(√

γ
x

)}
, x > 0, (1)

defines a distribution function with probability density function (pdf)

f(x, γ) =

√
γ

2π
x−

3
2 exp(− γ

2x
), x > 0, (2)

where the scale parameter γ is a positive real number. This distribution is known as Lévy distribution with param-
eter γ and if the random variable X has Lévy distribution with scale parameter γ, it is denoted by X ∼Lévy(γ).
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Lévy distribution is a heavy tail and does not have any moment. Therefore, to estimate the scale parameter
γ by a random sample X1, . . . , Xn from this distribution, we cannot find an unbiased estimator based on a linear
combination of X1, . . . , Xn. In this paper, we show that the moments of some order statistics of this distribution
exist, and hence, one can use a linear combination of these order statistics to estimate the parameter of Lévy
distribution.

For estimation of the unknown parameter of a population, many sampling methods are suggested in the lit-
erature. An efficient sampling procedure that can be viewed as a generalization of the Simple Random Sampling
(SRS) is Ranked Set Sampling (RSS). This sampling method can be used in situations where the sampling units
may be difficult to measure, time-consuming, or costly, but ranking sampling units (e.g., by visual inspection) may
be relatively easy. For example, in psychology, biology, medical, ecological and agricultural studies, a ranking of
experimental or sampling units is possible without actually measuring them ([18]).

The RSS is based on some order statistics of the SRS and it is well-known that the RSS method is more efficient
to estimate parameters than SRS method.

For estimating the scale parameter γ of Lévy distribution, [1] purposed the Maximum Likelihood (ML) estimator,
a median-based (Q) estimator and an estimator based on Laplace Transform (LT). In this paper, we purpose the
Best Linear Unbiased Estimator (BLUE) of γ based on a RSS. We derive the BLUE and its variance and compare
the variance of BLUE with Mean Square Error (MSE) of ML, Q and LT estimators through a simulation study. It
is shown that the BLUE is more efficient than mentioned estimators. To this end, in Section 2, we described RSS
method. In Section 3, we derive the BLUE estimator. Finally, in Section 4, we compare the proposed estimator
with the above-mentioned estimators of the scale parameter.

2. Ranked Set Sampling

In real life sampling situation where the measurement of the variable of interest from the experimental units is costly
or time consuming but the ranking of sample items related to the variable can be easily done by judgment without
actual measurement, the RSS method can be used and is highly beneficial and much superior to the standard SRS.
The concept of RSS was used first time in [9], to estimate the population mean of pasture yields in agricultural
experimentation. [16] and [4] provided a mathematical foundation for RSS. The properties of RSS in a variety of
statistical procedures have been investigated in the literature. For more details, see [2].

The original RSS can be described as follows. A random sample of size n units is drown from a population. The
units are ranked by judgment or any cost-free or little-cost method, and only the unit ranked the smallest is quanti-
fied. Then another random sample of size n units is drawn and ranked, and only the unit ranked the second smallest
is quantified. The procedure replicates until the unit ranked the largest in the nth random sample of size n is quan-
tified. In this way, we obtain a total of n measurement units, one from each sample. Let Xij , i, j = 1, . . . , n
be n independent random sample of size n and X(ij) be the jth order statistic of the ith random sample,
i, j = 1, . . . , n, then the RSS is X(11), X(22), . . . , X(nn) and the whole sample can be presented as shown in Table 1.

Table 1: Display of n2 random sample for constructing RSS

X(11) X(12) · · · X(1n)

X(21) X(22) · · · X(2n)

...
...

. . .
...

X(n1) X(n2) · · · X(nn)

Note that X(11), . . . , X(nn) are independent and X(ii) is distributed as the ith order statistics of a random sample
of size n.

In literature, RSS is used to estimate the population parameters in both nonparametric and parametric in-
ferences. In parametric inference, [3] in the estimation of location parameter of Cauchy distribution, [5] in the
estimation of parameters of two-parameter Weibull and extreme-value distributions, [7, 8] in estimation of parame-
ters of two-parameter exponential and logistic distributions, [6] in the estimation of parameters of mixture models
under RSS and [15] in the estimation of parameters of normal and exponential distributions, used RSS method to
find ordinary RSS estimator and/or BLUE based on RSS. For a review of literature on parametric estimation based
on RSS, see [11] and references therein.
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3. Estimation Based on a Ranked Set Sample

In this section, we use linear combinations of order statistics for estimating scale parameter of the Lévy distribution
using RSS. Let X(11), X(22), . . . , X(nn) be a RSS drown from Lévy distribution with scale parameter γ. We know

that if X ∼ Lévy(γ), then Z = X
γ ∼ Lévy(1). So, X(ii) = γZ(ii) where Z(11), . . . , Z(nn) is a RSS from Z. Therefore,

E(X(ii)) = γc(i), var(X(ii)) = γ2d(i),

where c(i) and d(i) are the mean and variance of Z(ii) which can be calculated as follows:

d(i) = e(i) − c2(i) (3)

and

c(i) = C.

∫ ∞
0

z(2πz3)−
1
2 exp(− 1

2z
)
[
2(1− Φ(

1√
z

))
]i−1[

1− 2(1− Φ(
1√
z

))
]n−i

dz,

e(i) = C.

∫ ∞
0

z2(2πz3)−
1
2 exp(− 1

2z
)
[
2(1− Φ(

1√
z

))
]i−1[

1− 2(1− Φ(
1√
z

))
]n−i

dz, (4)

where C = Γ(n+1)
Γ(i)Γ(n−i+1) , Γ(·) is a gamma function and Φ(·) is the standard normal distribution function. It should

be noted that some of the moments of order statistics X(11), X(22), . . . , X(nn) of Lévy distribution does not exist.
Therefore, we are limited ourselves to use order statistics for which their moments exist. These order statistics can
be determined in the following lemma.

Lemma 3.1. Let m be a real number, X1, . . . , Xn be a random sample from Lévy distribution with scale parameter
γ > 0, and X1:n, . . . , Xn:n be its corresponding order statistics. In order that E(Xm

i:n) exists it is necessary and
sufficient that i < n+ 1− 2m.

Proof. See the Appendix. �

Take m = 2, then from Lemma 3.1 and the fact that the bounds of i must be an integer, variance of X(ii) exists if
and only if 1 ≤ i ≤ n− 4.

For finding the BLUE of γ, we consider a linear combination of X(ii) as γ∗ =
∑n−4
i=1 kiX(ii). In the following

theorem, we find the BLUE of γ among the estimators of the form γ∗.

Theorem 3.2. Let X be a random variable with pdf (2) and X(11), . . . , X(nn) be a RSS from this distribution. Then
the BLUE of γ is given by

γ̃BLUE =

n−4∑
i=1

c(i)
d(i)

X(ii)

n−4∑
i=1

c2
(i)

d(i)

(5)

with variance

var(γ̃BLUE) =
γ2

n−4∑
i=1

c2
(i)

d(i)

(6)

where c(i) and d(i) are defined in (4) and (3), respectively.

Proof. We consider the general form of a linear combination of X(ii)’s as γ∗ =
∑n−4
i=1 kiX(ii) where ki’s are

constants and minimizing the variance of γ∗ under unbiasedness condition:
n−4∑
i=1

kic(i) = 1 and c(i) is defined in (4).

To determine the minimizing value of ki, i = 1, . . . , n− 4, we use the Lagrange method, i.e.,

Λ = var
(n−4∑
i=1

kiX(ii)

)
+ λ
(n−4∑
i=1

kic(i) − 1
)
,

∂Λ

∂ki
= 0 ⇒ 2γ2kid(i) + λc(i) = 0,

∂Λ

∂λ
= 0 ⇒

n−4∑
i=1

kic(i) = 1.
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Solving the above system of equations, we get

λ =
−2γ2

n−4∑
i=1

c2
(i)

d(i)

,

and

ki =
−λc(i)
2γ2d(i)

=
c(i)

d(i)

n−4∑
i=1

c2
(i)

d(i)

,

which gives the γ̃BLUE in (5). Note that it is easy to show that the above solution is the minimum point of Λ. �

4. Comparison

For estimating the scale parameter of Lévy distribution, [1] purposed three estimators and compared them by a
short simulation study. Based on the pdf (2) (which is the pdf used by [1] with θ2 = γ) these estimators are

-Maximum Likelihood (ML) estimator

γ̃ML =
n

n∑
i=1

Xi

.

-Median-based (Q) estimator

γ̃Q = m̂[Φ−1(0.75)]2,

where m̂ is the sample median.
-Laplace Transform (LT) estimator

γ̃LT =
1

2t
[− ln(Ψn(t))]2

where Ψn(t) = 1
n

n∑
i=1

exp(−tXi) is the empirical Laplace transform and t determines as the unique solution to the

equation Ψn(t̃) = 0.0658.

They showed that ML and LT estimators are not very different from one another but the Q estimator is less
precise. See [1] for more details.

We carry out a simulation study to assess the finite sample performance of the proposed estimator (BLUE) to
the estimators provided by [1]. These estimators compared by two methods. First, boxplots of 50 simulated BLUE,
LT, ML and Q estimators, for scale parameters γ = 0.1, 1, 10 and sample sizes n = 10, 100, are plotted in Figures 1
and 2. It can be seen that for n = 10 and for all values of γ, BLUE is better than the other estimators, especially
in small values of γ. When the sample size increase, BLUE has better performance than them.

Next, we compare the MSE of the mentioned estimators for different values of n, n = 10(1)50. Graphs of
(MSE/n)0.5 for BLUE as well as ML, Q and LT estimators as a function of n, are plotted in Figure 3. We note
that MSE of BLUE is equal to its variance which is given by (6), but MSEs of other estimators are approximated
by sample MSE through a simulation study (number of iterations is 1000). It can be seen from Figure 3, the BLUE
is better than other estimators and its MSE is less than others for different sample sizes. Also, from Figures 1-3,
it can be seen that ML and LT estimators are not very different from one another and are more precise than Q
estimator, which is indicated by [1].
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(a) γ = 0.1 (b) γ = 1 (c) γ = 10

Figure 1: Boxplots of BLUE, LT, ML and Q estimators based on 50 simulated data sets of size n = 10.

(a) γ = 0.1 (b) γ = 1 (c) γ = 10

Figure 2: Boxplots of BLUE, LT, ML and Q estimators based on 50 simulated data sets of size n = 100.
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(a) γ = 0.1 (b) γ = 1

(c) γ = 10

Figure 3: MSEs of BLUE and sample MSE of LT, ML and Q estimators of scale parameter γ with respect to sample
size n for γ = 0.1, 1, 10 in top, middle and bottom, respectively.

Appendix

To prove the Lemma 3.1, we need the following result.
Let X ∼ Lévy(γ) with γ > 0. Then

lim
λ→∞

λ0.5P (X > λ) =

√
2γ

π
. (A-1)

Proof.

lim
λ→∞

λ0.5P (X > λ) = lim
λ→∞

λ0.5(1− F (λ)) = lim
λ→∞

λ0.5
[
1− 2

{
1− Φ(

√
γ

λ
)
}]
.

Using Hopital’s rule and the fact Φ(0) = 0.5, the result is followed.

Proof of Lemma 3.1. We use the following equation ([13], [10])

P (X(k) > λ) =

n∑
j=n−k+1

(−1)j−(n−k+1)

(
j − 1

n− k

) ∑
1≤i1<i2<···<ij≤n

P (Xi1 > λ, . . . ,Xij > λ).

Since Xi1 , . . . , Xij are i.i.d. Lévy(γ), so

lim
λ→∞

λ0.5(n−k+1)P (X(k) > λ)

= lim
λ→∞

n∑
j=n−k+1

(−1)j−(n−k+1)

(
j − 1

n− k

)
λ0.5(n−k+1)[P (X > λ)]j

∑
1≤i1<i2<···<ij≤n

1

= lim
λ→∞

n∑
j=n−k+1

(−1)j−(n−k+1)

(
j − 1

n− k

)(
n

j

)
λ0.5(n−k+1)[P (X > λ)]j

=

(
n

n− k + 1

)
lim
λ→∞

[λ0.5P (X > λ)]n−k+1

+

n∑
j=n−k+2

(−1)j−(n−k+1)

(
j − 1

n− k

)(
n

j

)
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×
{

lim
λ→∞

[λ0.5P (X > λ)]n−k+1[P (X > λ)]j−(n−k+1)
}

(A-2)

From (A-1), limλ→∞[λ0.5P (X > λ)]n−k+1 =
(√

2γ
π

)n−k+1

and from (1), limλ→∞[P (X > λ)]j−(n−k+1) = 0 for

n− k + 2 ≤ j ≤ n. So, from (A-2) we have

lim
λ→∞

λ0.5(n−k+1)P (Xk > λ) =

(
n

n− k + 1

)(√2γ

π

)n−k+1

.

Hence

1

m
E|X(k)|m =

1

m

∫ ∞
0

P (Xm
(k) > υ)dυ

=
1

m

∫ ε

0

P (Xm
(k) > υ)dυ +

1

m

∫ ∞
ε

P (Xm
(k) > υ)dυ

=

∫ ε
1
m

0

λm−1P (X(k) > λ)dλ+

∫ ∞
ε

1
m

λm−1P (X(k) > λ)dλ.

The first integral is finite and the second is finite if and only if k < n+ 1− 2m, which is complete the proof.
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