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An extension of the Cardioid distributions on circle

Erfan Salavati*a

aDepartment of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

ABSTRACT: A new family of distributions on the circle is introduced which is a
generalization of the Cardioid distributions. The elementary properties such as mean,
variance, and the characteristic function are computed. The distribution is shown to
be either unimodal or bimodal. The modes are computed. The symmetry of the
distribution is characterized. The parameters are shown to be canonic (i.e. uniquely
determined by the distribution). This implies that the estimation problem is well-
defined. We also show that this new family is a subset of distributions whose Fourier
series has degree at most 2 and study the implications of this property. Finally, we
study the maximum likelihood estimation for this family.
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1. Introduction

Circular data arise in many natural phenomena. The main two categories of such data are physical directions and
periodical time records. Wind direction and the direction of migrating birds are two examples of physical directions.
The arrival times measured by clock and the date of specific observations (in a year) are two examples of periodical
time records. Circular data are usually measured and represented by degrees or radians. Axial data are another
type of data that are obtained from circular data by doubling them.

Circular distributions are important tools in analyzing and inference of circular data. One of the elementary
and well known circular distributions is the Cardioid distribution. This distribution has two parameters µ ∈ [0, 2π)
and ρ with |ρ| < 1

2 and is denoted by C(µ, ρ) and has the density function

f(θ) =
1

2π
(1 + 2ρ cos(θ − µ)).

Its distribution is symmetric around µ and is unimodal with a mode at µ and an anti-mode at µ+π. This family of
distributions is closed under convolution (summation of independent instances) and mixtures. For further properties
see [2], page 45.

Another popular and useful circular distribution is Von Mises distribution. This distribution has two parameters
µ ∈ [0, 2π) and κ > 0 and is denoted by VM(µ, κ) and has the probability density function

g(θ) =
1

2πI0(κ)
eκ cos(θ−µ),

where

I0(κ) =
1

2π

∫ 2π

0

eκ cos(θ)dθ.
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The parameter µ is the mean direction and κ is called the concentration parameter. This distribution is unimodal
and symmetric about θ = µ. The mode of this distribution is µ and its anti-mode is µ+π. For further information
on Von Mises distributions see [2], page 36.

We should also mention a recently introduced extension of the von Mises distribution by Kato and Jones in [4].
This family is obtained by applying a Möbius transformation on the von Mises distribution. A well known member
of this family is the wrapped Cauchy distribution.

The Cardioid and Von Mises families lack the necessary flexibility to capture the various behaviours of real data
sets (for instance, they are always unimodal). On the other hand, the Kato-Jones family has a complicated density
function which makes it hard to deal with analytically.

In this article, we introduce a new family of circular distributions which is more flexible than Cardioid and
Von Mises families and has simpler parametric form than the Kato-Jones family. This new family generalizes the
cardioid distributions. We call this new distribution the quadratic cardioid distribution because it’s density function
has a second-order triangular representation.

In the next section, after introducing the distribution, we will calculate some elementary statistics and the
characteristic function. We will also discuss the mixtures and convolutions of such distributions. Finally, we will
propose a maximum likelihood estimation method and apply it on a data set and will compare the results with
classical methods.

2. Mathematical Definition and Properties

Let µ1 ≤ µ2 ∈ [0, 2π) and r1, r2 ≥ 0. By a quadratic cardioid distribution, denoted by QC(µ1, µ2, r1, r2), we
mean a distribution with probability density function

f(θ;µ1, µ2, r1, r2) =
1

I(r1, r2)

(
1 + r2

1 + r2
2 + 2r1 cos(θ − µ1) + 2r2 cos(θ − µ2) + 2r1r2 cos(2θ − µ1 − µ2)

)
where I(r1, r2) = 2π(1 + r2

1 + r2
2).

Another representation for f is as follows,

f(θ;µ1, µ2, r1, r2) =
1

I(r1, r2)

∣∣∣1 + r1e
i(θ−µ1) + r2e

−i(θ−µ2)
∣∣∣2

which makes it clear that f ≥ 0.
The following proposition follows by substitution,

Proposition 1. If r1 = r2 = 0 this would be the uniform distribution on the circle. If r2 = 0 but r1 6= 0, the
distribution becomes ordinary cardioid distribution C(µ1,

r1
1+r21

). The case r1 = 0 is similar.

Another interesting special case is when µ1 = µ2 = µ. In this case the density function takes the form

f(θ;µ, r1, r2) =
1

I(r1, r2)

(
1 + r2

1 + r2
2 + 2(r1 + r2) cos(θ − µ) + 2r1r2 cos(2θ − 2µ)

)
.

Remark 1. For small values of r1, r2, the QC distribution is an approximation of the generalised Von Mises
distribution which is introduced and studied in [1].

Expectation of the QC distribution is 2π
I (r1e

iµ1+r2e
iµ2) and hence the mean direction is θ̄ = Arg(r1e

iµ1+r2e
iµ2).

Another easy calculation gives rise to the mean resultant length, R̄ =
√
r2
1 + r2

2 + 2r1r2 cos(µ1 − µ2).

The median of a circular distribution is defined to be a φ ∈ [0, 2π) such that
∫ φ+π

φ
f(θ)dθ = 0. For the QC

distribution, we obtain,

0 =

∫ φ+π

φ

f(θ)dθ =
1

2
+ 4r1 sin(φ− µ1) + 4r2 sin(φ− µ2),

which is equivalent to r1 sin(φ− µ1) + r2 sin(φ− µ2) = 0. Solving this equation gives,

sin(φ− µ1) = ±r2 sin(µ2 − µ1)

R̄2
,

sin(φ− µ2) = ±r1 sin(µ1 − µ2)

R̄2
.
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Above equations lead to two solutions which differ by π, the median is the one with r1 cos(φ−µ1)+r2 cos(φ−µ2) ≤ 0.
The characteristic function (or Fourier series) of a circular distribution µ is defined as

µ̂(n) =
1

2π

∫ 2π

0

e−inθµ(dθ), (n ∈ Z).

A simple calculation shows that,

Proposition 2. The characteristic function of QC(µ1, µ2, r2, r2) is

µ̂(n) =



1
2π n = 0
(r1e

−iµ1 + r2e
−iµ2)/I n = 1

(r1e
iµ1 + r2e

iµ2)/I n = −1
r1r2e

−i(µ1+µ2)/I n = 2
r1r2e

i(µ1+µ2)/I n = −2
0 n 6= 0,±1,±2

3. The Shape of the Distribution

In this section, we determine that for what values of the parameters, the QC distribution can be symmetric or
asymmetric, unimodal or bimodal.

Proposition 3. The QC distribution is symmetric if and only if at least one of the following holds:

(i) r1 = r2.

(ii) µ1 = µ2.

(iii) at least one of r1 and r2 are zero.

In case (i), the distribution is symmetric about µ1+µ2

2 , in case (ii), the distribution is symmetric about µ1 = µ2 and
in case (iii), the distribution is symmetric about µ1 (or µ2).

Proof. The if part is straightforward. For the only if part, assume the distribution is symmetric about θ0 (and
hence about θ0 + π). Denote the density function by f(θ) and assume that both r1 and r2 are nonzero. We have,

f (2n)(θ) =
1

I(r1, r2)
(−1)n(2r1 cos(θ − µ1) + 2r2 cos(θ − µ2) + 22n+1r1r2 cos(2θ − µ1 − µ2)).

Hence we have,
lim
n→∞

f (2n)(θ)2−2n = r1r2 cos(2θ − µ1 − µ2).

Since f is symmetric about θ0 then so is f (2n) and hence cos(2θ − µ1 − µ2). This implies that θ0 = µ1 + µ2 (or
µ1 + µ2 + π which makes no difference in the remainder of the proof). And also we find that 2r1 cos(θ − µ1) +
2r2 cos(θ − µ2) is also symmetric about θ0. This, combined with µ1 = µ2 implies that r1 = r2.

�

Modes and anti-modes of a circular distribution correspond to the local maxima and minima of its density
function. The following proposition characterizes the modes and anti-modes for QC distributions.

Proposition 4. (i) In general, modes and anti-modes are the roots of the following function,

r1 sin(θ − µ1) + r2 sin(θ − µ2) + 2r1r2 sin(2θ − µ1 − µ2). (1)

(ii) The QC distribution has either 1 mode and 1 anti-mode or 2 modes and 2 antimodes.

Proof.

(i) Follows easily from calculation of f ′(θ).

(ii) It is obvious that a periodic function has at least one maximum and one minimum in its period. Hence at least
one mode and at least one anti-mode exist. On the other hand equation (1) can be turned in to a 4th degree
equation by expanding the expression in terms of t = tan( θ2 ). Hence at most 4 roots exist and noting that
the number of nodes and anti-nodes should be equal, the statement follows.
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�

Corollary 3.1. In the special case µ1 = µ2 = µ, two solutions of (1) are θ = µ and θ = µ + π. The former is
always a mode and the latter is a mode if and only if 4r1r2 > r1 + r2. If this inequality holds then there are two
other solutions for (1) which are the solutions of cos(θ − µ1) = − r1+r2

4r1r2
and both are anti-modes.

Remark 2. In general, the modes and anti-modes can be calculated analytically using Ferrari’s method for the 4th
degree equation mentioned in the proof of proposition 4.

Figure 1 shows the different shapes of the density of a quadratic Cardioid distribution for different values of
parameters.

Columns from left to right correspond respectively to r1 = 1
2 , 1,

3
2 and µ1 = 1, 3

2 , 2 and rows from top to bottom
correspond respectively to r2 = 1

2 , 1,
3
2 and µ2 = 1

2 , 1,
3
2 .

Figure 1: graphs of densities of the Q-Cardioid distribution for different values of parameters

4. QC as a parametrization of second order positive definite Fourier series

As we showed in proposition 2, the Fourier series of the QC distribution has degree 2 (i.e coefficients of degrees
higher than 2 are zero). In this section we will further investigate the properties of the QC distribution from the
Fourier series point of view.

LetM,M+ andMπ be respectively the set of all signed Borel measures, positive Borel measures and probability
Borel measures on S1.

We define the spaces TN to be the set of all positive signed Borel measures on S1 whose Fourier series has degree
at most N . In other words,

TN = {µ ∈M : µ̂(n) = 0 ∀n /∈ {−N, . . . , 0, . . . , N}},

and define
T +
N = TN ∩M+, T πN = TN ∩Mπ.

Proposition 5. T +
N is closed under linear combination and convolution. T πN is closed under mixture and convolu-

tion.

Proof. Since Fourier transform is a linear transformation, hence closedness under linear combinations is trivial.
On the other hand, convolution of measures translates into multiplication of Fourier transforms and hence closedness
under convolution also follows. The statement for T πN follows easily from the fact thatMπ is closed under mixture
and convolution.

48



E. Salavati, AUT J. Math. Comput., 2(1) (2021) 45-52, DOI:10.22060/ajmc.2020.18285.1029

�

Let C and QC be respectively the space of all Cardioid and Quadratic-Cardioid distributions.
The following proposition shows the relation between Cardioid distributions and T πN spaces.

Proposition 6. (i) C = T π1 .

(ii) QC ⊂ T π2 .

Proof.

(i) Let f be the density function of some µ ∈ T π1 . We have

f(θ) = f̂(0) + f̂(1)eiθ + f̂(−1)e−iθ.

Since f is real we can replace the above expression with its real part. For suitable constants a0, a1 and b1 we
obtain,

f(θ) = a0 + a1 cos(θ) + b1 sin(θ) = a0 + c cos(θ − µ),

where c =
√
a2

1 + b21 and µ = arctan(a1/b1). Integrating over [0, 2π] implies a0 = 1
2π and positivity of f

implies that |c| < 1
π which implies the statement.

(ii) Follows obviously from proposition 2.

�

Remark 3. Indeed it may be the case that QC = T π2 but we have not yet succeeded in proving or disproving it.

The previous proposition implies that the QC distributions are actually parametrizing the space T π2 at least
partially. A good question is that to what extent is this parametrization complete? In other words, what portion
of T π2 is covered by this parametrization?

To answer this question we need to characterize the elements of T π2 in terms of their Fourier series. We use
a well-known theorem due to Bochner which provides a necessary and sufficient condition for a function to be
the characteristic function of a probability distribution. The Bochner theorem holds in general for all probability
measures on dual group of any Abelian group, but we state it here only for the special case of probability measures
on S1.

Theorem 4.1 (Bochner). A function f̂ : Z → C is the Fourier series of a positive probability measure on S1 if

and only if f̂(0) = 1
2π and the following matrix is positive definite:

f̂(0) f̂(1) f̂(2) · · · · · ·
f̂(−1) f̂(0) f̂(1) f̂(2) · · ·

f̂(−2) f̂(−1) f̂(0) f̂(1)
. . .

... f̂(−2) f̂(−1)
. . .

. . .
...

...
. . .

. . .
. . .


Let ν̂ be the Fourier series of an element ν in T π2 . We assume ν̂(1) = c1

2π and ν̂(2) = c2
2π . It follows that

ν̂(−1) = c̄1
2π and ν̂(−2) = c̄2

2π .
Applying the Bochner theorem now implies,

Proposition 7. ν ∈ T π2 if and only if ν̂(0) = 2π, ν̂(1) = 2πc1 and ν̂(2) = 2πc2 and the following pentadiagonal
matrix is positive definite: 

1 c1 c2 0 · · ·
c̄1 1 c1 c2 · · ·

c̄2 c̄1 1 c1
. . .

0 c̄2 c̄1
. . .

. . .
...

...
. . .

. . .
. . .


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Applying the determinant criterion for positive definiteness, gives us the following necessary conditions:

Proposition 8. The following are necessary conditions for ν ∈ T π2 ,

−c1c1 + 1 > 0,

c21c2 − 2c1c1 + c2c1
2 − c2c2 + 1 > 0,

c21c1
2 + 2c21c2 − 2c1c2c1c2 − 3c1c1 + c22c2

2 + 2c2c1
2 − 2c2c2 + 1 > 0.

Remark 4. One may think of generalizing the QC distributions as follows,

f(θ;µ, r) =
1

I(r)

(
1 +

p∑
i=1

r2
i +

p∑
i=1

2ri cos(θ − µi) +

p∑
i=1

p∑
j=1

2rirj cos(2θ − µi − µj)
)
.

This family has 2p parameters. Although taking p > 2 may result in a larger family than QC, but the disadvantage is
that since this new family is still a subset of T π2 (which is a four-dimensional family), hence the above parametrization
can not be invertible. This non-invertibility makes the estimation problem ill-posed.

5. Maximum Likelihood Estimation

In this section, we investigate the estimation problem for QC distributions. First we show that the estimation
problem is well-posed in the sense that the parameters are uniquely determined by the distribution. Then we will
apply the maximum likelihood method to a real data set.

Theorem 5.1. Parameters of a QC distribution are uniquely determined by the distribution.

Proof. Assume that QC(µ1, µ2, r2, r2) ≈ QC(µ′1, µ
′
2, r
′
1, r
′
2). Define

g(z) = r1e
−iµ1z2 + z + r2e

iµ2 ,

and
h(z) = r′1e

−iµ′
1z2 + z + r′2e

iµ′
2 .

It follows from the assumption that for z = eiθ,
∣∣∣ g(z)h(z)

∣∣∣ is a constant c. Hence the function g(z)
ch(z) maps the unit circle

|z| = 1 into itself.

Now it follows from the Schwartz lemma that g(z)
ch(z) is a product of two Mobius functions eiα z−a

1−āz and eiβ z−b
1−b̄z .

Substituting implies that (µ1, µ2, r1, r2) = (µ′1, µ2′, r′1, r′2).

�

The log-likelihood function of a data set {θ1, . . . , θN} is

ll(µ1, µ1, r1, r2) =

N∑
i=1

log
(

1+r2
1+r2

2+2r1 cos(θi−µ1)+2r2 cos(θi−µ2)+2r1r2 cos(2θi−µ1−µ2)
)
−N log(2π(1+r2

1+r2
2)).

In the following, we apply the maximum likelihood estimation on a real data set. The data, is the minute-
by-minute exchange volume of Bitcoin (BTC) for the time period of Jan 2012 to April 2020. The data has
been downloaded from Kaggle website (www.kaggle.com/mczielinski/bitcoin-historical-data). The advantage of the
Bitcoin data is that since it is a 24-hour market, the exchange data can be treated as a circular data and then one
can inference on the daily or weekly activity of this market. For this research we have taken the time period to be
a week.

We have set the starting parameters of optimization to be those of ordinary Cardioid distribution. Figure 2
shows the resulting fitted QC distribution.
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Figure 2: Histogram of the exchange volume of BTC and the density of the fitted QC distribution

Table 1 shows the fitted parameters for three different families of circular distributions along with their log-
likelihoods, AIC, and BIC. It is clear that QC distributions outperform the other two families of distributions, by
any of the three criteria.

Cardioid von Mises Quadratic Cardioid
Parameters µ = 2.40, r = 0.12 µ = 0.23, κ = 2.43 µ1 = 0.02, µ2 = 2.28, r1 = 0.27, r2 = 8.01

log-Likelihood -56185588 -56213094 -56158331
AIC 112371179 112426193 112316666
BIC 112371208 112426250 112316724

Table 1: Fitted parameters, log-Likelihood, AIC and BIC of the best fitted distribution among three different
families of circular distributions

6. Conclusion

In this article we introduced a new family of circular distributions, called QC distributions, which is more
flexible than well-known circular distributions and at the same time is computationally tractable. This four-
parameter family is a subset of the family of circular distributions whose fourier series has second order. The
descriptive statistics of QC distributions, including mean, median, modes and characteristic function has been
calculated analytically. The maximum-likelihood estimation for this family has been investigated and has been
implemented on a real data set. The results show that QC distributions outperform well-known distributions in
the sense of likelihood, AIC and BIC.

References

[1] E. A. Yfantis, L. E. Borgman, An extension of the von Mises distribution, Communications in Statistics-Theory
and Methods 11 (1982) 1695-1706.

[2] K. V. Mardia, P. E. Jupp, Directional Statistics, Wiley series in probability and statistics. Wiley, Chichester
2000.

[3] K. V. Mardia, Probability and mathematical statistics: statistics of directional data, Academic Press, London
1972.

51



E. Salavati, AUT J. Math. Comput., 2(1) (2021) 45-52, DOI:10.22060/ajmc.2020.18285.1029

[4] S. Kato, M. C. Jones, A family of distributions on the circle with links to, and applications arising from, Möbius
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