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ABSTRACT: In this paper, using the Lie group analysis method, we study the
group invariant of the Foam Drainage equation. It shows that this equation can be
reduced to ODE. Also we apply the Lie-group classical, and the nonclassical method
due to Bluman and Cole to deduce symmetries of the Foam Drainage equation. and
we prove that the nonclassical method applied to the equation leads to new reductions,
which cannot be obtained by Lie classical symmetries. Also this paper shows how to
construct directly the local conservation laws for this equation.
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1. Introduction

Symmetry (joined to simplicity) has been, is, and probably will continue to be, an elegant and useful tool in the
formulation and exploitation of the laws of nature. The request of symmetry accounts for the regularities of the
laws that are independent of some inessential circumstances. For instance, the reproducibility of experiments in
different places at different times relies on the invariance of the lawsof nature under space translation and rotation
(homogeneity and isotropy of space), and time translation (homogeneity of time). Without such regularities physical
events probably would remain out of our knowledge, and the formulation of the laws themselves would be impossible.
An important implication of symmetry in physics and in mathematics is the existence of conservation laws. This
connection has been noticed in 1918, when Emmy Noether [13] proved her famous theorem relating continuous
symmetries and conservation laws.

In the nineteenth century a great advance arose when the Norwegian mathematician Sophus Lie began to in-
vestigate the continuous groups of transformations leaving differential equations invariant, creating what is now
called the symmetry analysis of differential equations. Thus, symmetry analysis of differential equations was devel-
oped and applied by Sophus Lie during the period 1872-1899 [10, 11]. This theory enables to derive solutions of
differential equations in a completely algorithmic way without appealing to special lucky guesses.

Most scientific problems and physical phenomena occur nonlinearly. Except in a limited number of these
problems, finding the exact analytical solutions of such problems are rather difficult. Therefore, there have been
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attempts to develop new techniques for obtaining analytical solutions which reasonably approximate the exact
solutions [12]. In recent years, several such techniques have drawn special attention, such as Lie group [10, 11] ,the
homogeneous balance method, Adomian’s decomposition method (ADM), and etc.

Figure 1: Schematic illustration of the interdependence of drainage, coarsening, and rheology of foams [16].

Foams are of great importance in many technological processes and applications, and their properties are subject
of intensive studies from both practical and scientific points of view [16]. Liquid foam is an example of soft matter
(or complex fluid) with a very welldefined structure that first clearly described by Joseph plateau in the 19th
century. Weaire et al. [21] showed in their work simple answers to many such questions exist, but no going
experiments continue to challenge our understanding. Foams and emulsions are wellknown to scientists and the
general public alike because of their everyday occurrence [14, 20]. Foams are common in foods and personal care
products such as creams and lotions, and foams often occur, even when not desired, during cleaning (clothes, dishes,
scrubbing) and dispensing processes [15]. They have important applications in the food and chemical industries,
firefighting, mineral processing, and structural material science [7]. Less obviously, they appearinacoustic cladding,
lightweightmechanical components, andimpactabsorbingparts on cars, heat exchangers, and textured wallpapers
(incorporated as foaming inks) and even have an analogy in cosmology. The packing of bubbles or cells can form
both random and symmetrical arrays, such as sea foam and bees’ honeycomb. History connects foams with a
number of eminent scientists, and foams continue to excite imaginations [23]. There are now many applications
of polymeric foams [6] and more recently metallic foams, which are foams made of metals such as aluminum [2].
Some commonly mentioned applications include the use of foams for reducing the impact of explosions and for
cleaning up oil spills. In addition, industrial applications of polymeric foams and porous metals include their use
for structural purposes and as heat exchange media analogous to common ”finned” structures [8]. Polymeric foams
are used in cushions and packing and structural materials [6]. Glass, ceramic, and metal foams [1] can also be
made and find an increasing number of new applications. In addition, mineral processing utilizes foam to separate
valuable products by flotation. Finally, foams enter geophysical studies of the mechanics of volcanic eruptions [15].
Recent research in foams and emulsions has centered on three topics which are often treated separately but are, in
fact, interdependent: drainage, coarsening, and rheology; see Figure 1. We focus here on a quantitative description
of the coupling of drainage and coarsening. Foam drainage is the flow of liquid through channels (plateau borders)
and nodes (intersections of four channels) between the bubbles, driven by gravity and capillarity [9]. During foam
production, the material is in the liquid state, and fluid can rearrange while the bubble structure stays relatively
unchanged. The flow of liquid relative to the bubbles is called drainage. Generally, drainage is driven by gravity
and/or capillary (surface tension) forces and is resisted by viscous forces [15]. Because of their limited time stability
and despite the numerous studies reported in the literature, many of their properties are still not well understood,
in particular the drainage of the liquid in between the bubbles under the influence of gravity [22, 3]. Drainage plays
an important role in foam stability. Indeed, when foam dries, its structure becomes more fragile; the liquid films
between adjacent bubbles being thinner, then can break, leading to foam collapse. In the case of aqueous foams,
surfactant is added into water, and it adsorbs at the surface of the films, protecting them against rupture [5]. Most
of the basic rules that explain the stability of liquid gas foams were introduced over 100 years ago by the Belgian
Joseph Plateau who was blind before he completed his important book on the subject. This modern-day book by
Weaire and Hutzler provides valuable summaries of plateaus work on the laws of equilibrium of soap films, and it
is especially useful since the original 1873 French text does not appear to be in a fully translated English version.
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Weaire and Hutzler note that Sir W. Thompson (Lord Kelvin) was simulated by Plateau’s book to examine the
optimum packing of free space by regular geometrical cells. His solution to the problem remained the best until
quite recently. Why does this area of theoretical research, still active today, have connections with the apparently
frivolous theme of bubbles? It is because the packing of free space involves the minimization of the surface energy
of the structure (i.e., least amount of boundary material). Thus, one might ask why such an often-observed medium
as a foam has not provided the optimum solution to this problem much earlier; perhaps, this shows that observation
is often biased towards what one expects to see, rather than to the unexpected. Also, in nature, there are packing
problems, such as the bees’ honeycomb. Its shaped ends provide a nice example of Plateau’s rules in a natural
environment [23]. Recent theoretical studies by Verbist and Weaire describe the main features of both free drainage
[17, 18], where liquid drains out of a foam due to gravity, and forced drainage [17], where liquid is introduced to the
top of a column of foam. In the latter case, a solitary wave of constant velocity is generated when liquid is added at
a constant rate [4]. Forced foam drainage may well be the best prototype for certain general phenomena described
by nonlinear differential equations, particularly the type of solitary wave which is most familiar in tidal bores. The
model developed by Verbist and Weaire idealizes the network of Plateau borders, through which the majority of
liquid is assumed to drain, as a set of N identical pipes of cross section A, which is a function of position and time
[19].

∂A

∂t
+

∂

∂x

(
A2 −

√
A

2

∂A

∂x

)
= 0, (1)

where x and t are scaled position and time coordinates, respectively.

2. Lie Symmetry of the Foam Drainage Equation (FDE)

We consider the Foam Drainage equation. We first use the transformation A(x, t) = u2(x, t) to convert (1) to

FDE : ut =
1

2
uuxx + u2

x − 2u2ux. (2)

Lie method of infinitesimal transformation groups which essentially reduces the number of independent variables
in PDE and reduces the order of ODE has been widely used in equations of mathematical physics, The classical
method for finding symmetry reductions of PDEs is the Lie group method of infinitesimal transformations and
the associated determining equations are an over determined linear system. We let the group of infinitesimal
transformations be defined as

x = x+ εξ1(x, t, u) +O(ε2), t = t+ εξ2(x, t, u) +O(ε2), u = u+ εη(x, t, u) +O(ε2), (3)

and impose the condition of invariance on (1). The invariance under (3) means that if u is solution of (1), then u∗

is also asolution of it.
We conside the Lie point symmetry generator v = ξ1(x, t, u)∂x + ξ2(x, t, u)∂t + η(x, t, u)∂u of Foam Drainage

equation, then v must satisfy Lie’s symmetry condition Pr(2)v (∆) = 0, To obtain the infinitesimal generators v,
we need to determin all possible coefficient function ξ1, ξ2 and η so that the corresponding one-parameter group
exp(εv) is a symmetry group of the FDE equation, we need to know the second prolongation

pr(2)v = v + ηx
∂

∂ux
+ ηt

∂

∂ut
+ ηxx

∂

∂uxx
+ ηxt

∂

∂uxt
+ ηtt

∂

∂utt
, (4)

of v, with the coefficients:

ηx = Dxη + uxDuη − uxDxξ
1 − ux2Duξ

1 − utDxξ
2 − utuxDuξ

2,

ηt = Dtη + utDuη − uxDtξ
1 − uxutDuξ

1 − utDtξ
2 − ut2Duξ

2,

ηxx = D2
xη + 2uxDuDxη + · · · − 2uxuxtDuξ

2,

ηxt = DxDtη + utDuDxη − · · · − uttuxDuξ
2,

ηtt = D2
tη + 2utDuDtη − · · · − 2uttDtξ

2,

Applying pr(2)v to FDE equation , we find the infinitesimal generator. So that we need to solve the equations
yields:

ξ2
x = 0, ξ2

u = 0, ξ1
u = 0, 2uξ1

x − η − uξ2
t = 0, 2ηt + 4u2ηx − uηηxx = 0,

uηuu + 2ηu − 4ξ1
x + 2ξ2

t = 0, −4ξ1
t + 8u2ξ2

t − 8u2ξ1
x − 8ηx − 4uηux + 16uη + 2uξ1

xx = 0,
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Table 1

[ , ] v1 v2 v3

v1 0 −3v2 −v3

v2 3v2 0 0
v3 v3 0 0

The solution of the above system gives the following coefficients of the vector field v:

ξ1 = c1x+ c3, ξ2 = 3c1t+ c2, η = −c1u, (5)

Where c1, c2, and c3 are arbitary constants, thus the Lie algebra g of the FDE equation is spanned by the three
vector fields v1 = x∂x + 3t∂t − u∂u, v2 = ∂t, and v3 = ∂x. Also their commutator table is

3. Group Invariant Solutions

Theorem. The one-parameter groups Gi(ε) generated by the v1, v2, v3 are given in the following table:

G1(x, t, u) = (xeε, te3ε, ue−ε), G2(x, t, u) = (x, t+ ε, u), G3(x, t, u) = (ε+ x, t, u), (6)

where entries give the transformed point exp(εvi)(x, t, u) = (x, t, u) , i = 1, 2, 3. �

Taking into account the fact that generally to each one parameter subgroups of the full symmetry group of a
system, there will associate a family of solutions called invariant solutions, the following theorem can be stated:

Theorem. If u = f(x, t) is a solution of Eq. (1), so are the functions

G1(ε) · f(x, t) = eεf(xeε, te3ε), G2(ε) · f(x, t) = f(x, t+ ε), G3(ε) · f(x, t) = f(x+ ε, t), (7)

where ε is a real number. �

Here we can find the general group of the symmetries by considering a general linear combination “c1v1 +c2v2 +
c3v3” of the given vector fields. In particular if g is the action of the symmetry group near the identity, it can be
represented in the form g = {exp(c1v1 + c2v2 + c3v3) : c1, c2, c3 ∈ R}.

4. Optimal system of the Benny equation

This part using the adjoint representation for classifying group-invariant solutions. let G a Lie group. An optimal
system of subgroup is a list of conjugace nequivalent subgroups with the property that any other subgroup is
conjugate to precisely one subgroup in the list. Similarly, a list of subalgebras forms an optimal system if every
subalgebra of g is equivalent to a unique member of the list under some element of the adjoint representation:
h̃ = Ad, g(h), g ∈ G. We finding exact solutions and performing symmetry reductions of differential equations.
As any transformation in the symmetry group maps a solution to another solution, it is sufficient to find invariant
solutions which are not related by transformations in the full symmetry group, this has led to the concept of an
optimal system. For one-dimensional subalgebras, this classification problem is essentially the same as the problem
of classifying the orbits of the adjoint representation.

The adjoint action is given by the Lie series Ad(exp(εvi))vj =
∑∞
n=0(εn/n!)(ad vi)

n(vj), where [vi,vj ] is a
commutator for the Lie algebra, ε is a parameter, and i, j = 1, 2, 3, and also table Adjoint with (i, j)−th entry
indicating Ad(exp(εvi)vj): where ε is a real number.

Let F εi : g→ g defined by v 7→ Ad(exp(εvi)v) is a linear map, for i = 1, 2, 3. The matrices Mε
i of F εi , i = 1, 2, 3

with respect to basis {v1,v2,v3}

Mε
1 =

 1 0 0
0 e3ε 0
0 0 eε

 , Mε
2 =

 1 −ε 0
0 1 0
0 0 1

 , Mε
3 =

 1 0 −ε
0 1 0
0 0 1

 , (8)

by acting above matrices on a vector field v alternatively we can show that a one-dimensional optimal system of g
is given by

Y1 = v1, Y2 = v2, Y3 = v3, Y4 = v2 + v3, Y5 = v2 − v3, (9)
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Table 2

[ , ] v1 v2 v3

v1 v1 v2 − εv3 v3

v2 v1 + εv3 v2 v3

v3 v1 v2 v3

5. Nonclassical Symmetry of FDE equation

Bluman and Cole in 1969, proposed the nonclassical symmetry method to obtain new exact solution of the linear
heat equation. Consider a kth order system ∆1 of differential equations

∆ν(x, u, u(k)) = 0, ν = 1, · · · , l, (10)

in n independent variables x = x(x1, · · · , xn) and q dependent variables u = u(u1, · · · , uq) with uk denoting the
derivatives of the u’s with respect to the x′s up to order k. Suppose that v is a vector field on the space Rn×Rq of
independent and dependent variables: v =

∑n
i=1 ξ

i(x, u) ∂xi +
∑q
α=1 φ

α(x, u) ∂uα . In what follows, the derivatives
∂xi , ∂uα and so on will be for short denoted by ∂xi , ∂uαand so on. The graph of a solution

uα = fα(x1, · · · , xn), α = 1, · · · , q, (11)

to the system defines an n-dimensional submanifold Γf ⊂ Rn × Rq of the space of independent and dependent
variables. The solution will be invariant under the one-parameter subgroup generated by v if and only if Γf is an
invariant submanifold of this group. By applying the well known criterion of invariance of a submanifold under
a vector field we get that (11) is invariant under v if and only if f satisfies the first order system ∆2 of partial
differential equations: Qα(x, u, u(1)) = φα(x, u) −

∑n
i=1 ξ

i(x, u) ∂uα/∂xi = 0, that α = 1, · · · , q known as the
invariant surfacec onditions. The q-tuple Q = (Q1, · · · , Qq) is known as the characteristic of the vector field v.
Since all the solutions of (10) are invariant under v the first prolongation v(1) of v is tangent to ∆2. Therefore, we
conclude that invariant solutions of the system (10) are infact solutions of the joint overdetermined system (10) In
what follows, the k-th prolongation of the invariant surface conditions (10) will be denoted by ∆k, which is a kth
order system of partial differential equations obtained by appending to (10) its partial derivatives with respect to
the independent variables of orders j ≤ k − 1. For the system (10) to be compatible, the k-th prolongation v(k) of
the vector field v must be tangent to the intersection ∆ ∩∆k:

v(k)(∆ν)|∆∩∆k
= 0, ν = 1, · · · , l, (12)

If the equations (12) are satisfied, then the vector field v is called a nonclassical infinitesimal symmetry of the
system (10).

We define v = τ1∂x+τ2∂t+τ
3∂u, be a vector field and ∆1 = ut+2u2ux−u2

x− 1
2uxxu and ∆2 = τ3−τ1ux−τ2ut.

Without loss of generality we choose τ2 = 1, from ∆2: ut = τ3− τ1ux. Now via substitute this equation in ∆1 and
τ1 = A1 , τ3 = A3:

A3 + (2u2 −A1)ux − u2
x −

1

2
uuxx = 0, (13)

suppose w = L∂x +K∂t +M∂u. applying Pr(2)w to equation (13) determining equations yields:

2(A1 − 2u2)Mx + uMxx = 0, 4uM − uMxu +
1

2
uLxx − 2Mx + (A1 − 2u2)(Lx −Mu) = 0,

2uLx − uMu −M = 0, Kx = 0, 4(Mu − Lx) + uMuu = 0, Lu = 0, Ku = 0,

Now via solve upper equation and substitute L = τ1, K = 1, M = τ3, in v, leads v = ∂x + ∂t.

6. Symmetry reductions and invariant solution of FDE equation

In this section, according to the vector fields v = ∂x − ∂t, and via change variable z = x+ t and u = f(z) we find
that: ut = du/dt = df(z)/dt = (df/dz)(dz/dt) = fz, ux = fz, and uxx = fzz; Substitude it in equation (13), leads
2f2
z − 2(1 + 2f2)fz + ffzz = 0.
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7. Conservation Law of FDE equation

Consider a system R{x;u} of N differential equations of order k with n independent variables x = (x1, · · · , xn)
and m dependent variables u(x) = (u1(x), · · · , um(x)), given by

Rσ[u] = Rσ(x, u, ∂u, · · · , ∂ku) = 0, σ = 1, · · · , N. (14)

Definition A local conservation law of the DE system (14) is a divergence expression

D1Φ1[u] + · · ·+ DNΦN [u] = 0. (15)

holding for all solutions of the DE system (14). In (15), Di and Φi[u] = Φi(x, u, ∂u, · · · , ∂ru), i = 1, · · · , n
respectively are total derivative operators and the fluxes of the conservation law. i = 1, · · · , n, respectively are
total derivative operators and the fluxes of the conservation law. A systematic way for the determination of
conservation laws associated with variational symmetries for systems of Euler-Lagrange equations is in deed the
famous Noether theorem.

7.1. Direct method to find multipliers of conservation law

In general, for a given non-degenerate DE system (14), nontrivial local conservation laws arise from seeking scalar
products that involve linear combinations of the equations of the DE system (14) with multipliers (factors) that
yield nontrivial divergence expressions. In seeking such expressions, the dependent variables and each of their
derivatives that appear in the DE system (14) or in the multipliers, are replaced by arbitrary functions. Such
divergence expressions vanish on all solutions of the DE system (14) provided the multipliers are non-singular.
In particular a set of multipliers {Λσ[U ]}Nσ=1 = {Λσ(x, U, ∂U, · · · , ∂lU)}Nσ=1 yields a divergence expression for
the DE system R{x;u} (14) if the identity Λσ[U ]Rσ[U ] ≡ DiΦ

i[U ], holds for arbitrary functions U(x). Then
on the solutions U(x) = u(x) of the DE system (2), if Λσ[u] is non-singular, one has a local conservation law
Λσ[u]Rσ[u] ≡

∑
DiΦ

i[u] = 0.

Definition. The Euler operator with respect to Uµ is the operator defined by EUµ = ∂/∂Uµ − Di ∂/∂U
µ
i + · · · +

(−1)sDi1 · · ·Dis ∂/∂U
µ
i1···is + · · · . We know that the Euler operators annihilate any divergence expression. Now we

use this subject to find local conservation law multiplier. We seek all local conservation law multipliers of the form
Λ(x, t, u, ux) of the FDE equation. Now suppose Λ = Λ(x, t, U, Ux),Λ is a local conservation law multiplier of the
FDE equation if and only if

EU

(
Λ(Ut + 2U2Ux − U2

x −
1

2
UUxx)

)
≡ 0. (16)

Then from equations (15) and (16), and splits into the equations:

ΛUx = 0, Λ− UΛU = 0, UU2
xΛUU + 2Λt − 2UxΛx + ΛxxU + 4U2Λx + 2UUxΛxU = 0, (17)

whose solution yields the one local conservation law multiplier Λ = U .

7.2. Computation fluxes of conservation laws

In this part we find fluxes of conservation laws and use the direct method of flux computation. For the multiplier
Λ = U ,

U(ut + 2u2ux − u2
x −

1

2
uuxx) = DxΨ + DtΦ, (18)

(Dt denote total derivative operators), assume Ψ = Ψ(x, t, U, Ux),Φ = Φ(x, t, U, Ux) now we find Φ, Ψ. via expand
the equation (18) we obtain Ψx + ΨUUx + ΨUxUxx + Φt + ΦUUt + ΦUxUxt = U(Ut + 2U2Ux − Ux2 − UUxx/2).
Matching the terms of the highest order derivatives Ut,Uxx finds that

Ψx + ΨUUx + Φt + UU2
x + ΦUxUxt − 2UxU

3 = 0 2ΨUx + U2 = 0, ΦU = U, (19)

via solving this equation we obtain: Φ = U2/2 + F1(x, t, Ux) and Ψ = −U2Ux/2 + F2(x, t, U), where F1(x, t, Ux)
and F2(x, t, U) are arbitrary function, via Substituting (18) into the determining equations obtain Φ = U2/2, and
Ψ = −U2Ux/2 + U4/2. Finally

U(Ut + 2U2Ux − U2
x −

1

2
UUxx) = Dt(

1

2
U2) + Dx(−1

2
U2Ux +

1

2
U4). (20)
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7.3. Computation flux of Conservation Laws via the First Homotopy Method

Definition. (higher Euler operators) The continuous higher Euler operators for one-dimensional (1D) are defined

by L(i)
u(x) =

∑∞
i=1

(
k
i

)
(−Dx)k−i ∂/∂ukx. Also for two-dimensional (2D) are defined by

L(ix,it)
u(x,t) =

∞∑
kx=ix

∞∑
kt=it

(
kx
ix

)(
kt
it

)
(−Dx)kx−ix(−Dt)

kt−it ∂

∂ukxxktt
, (21)

for example we expand above equation

L(1,0)
u(x,t) =

∂

∂ux
− 2Dx

∂

∂u2x
−Dt

∂

∂uxt
+ 3D2

x

∂

∂u3x
+ · · · ,

L(0,1)
u(x,t) =

∂

∂ut
− 2Dt

∂

∂u2t
−Dx

∂

∂utx
+ 3D2

t

∂

∂u3t
+ · · · ,

L(1,1)
u(x,t) =

∂

∂uxt
− 2Dx

∂

∂u2xt
− 2Dt

∂

∂ux2t
+ 3D2

x

∂

∂u3xt
.

Definition. (homotopy operator) The continuous homotopy operator is defined by

H(x)
u(x,t)(f) =

∫ 1

0

N∑
j=1

I(x)
uj (f)[λu]

dλ

λ
, H(t)

u(x,t)(f) =

∫ 1

0

N∑
j=1

I(t)
uj (f)[λu]

dλ

λ
,

with

I(x)
uj (f) =

∞∑
ix=0

∞∑
it=0

(
1 + ix + it

1 + ix

)
Dix
x Dit

t

(
ujL

(1+ix,it)
uj(x,t)

(f)
)

Theorem. Suppose R[U ] is a divergence expression R[U ] = Div Φi[U ] =
∑

DiΦ
i[U ] = 0 and R[0] = 0. Then the

fluxes Φi[U ] are given by Φi[u] = H(R[U ]). �

Now for FDE equation we obtain :

L(1,0)
u(x,t) = 2u3, L(0,1)

u(x,t) = u, L(2,0)
u(x,t) = −1

2
u2, L(1,1)

u(x,t) = 0, L(0,2)
u(x,t) = 0, (22)

now

H
(x)
u(x,t)(f) =

∫ 1

0

(2λ3u4 − 3

2
λ2u2ux)dλ =

1

2
u2(u2 − ux), H

(t)
u(x,t)(f) =

∫ 1

0

λu2dλ =
1

2
u2.

So, the conservation law corresponding to the local multiplierΛ = U for the FDE equation is concluded as Dt(u
2) +

Dx(u4 − u2ux) = 0.
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[2] J. Banhart, Metallschäume (in German), Bremen: MIT Verlag, 1997.

[3] A. Bhakta and E. Ruckenstein, Decay of standing foams: drainage, coalescence and collapse, Adv. Colloid
Interface Sci., 70 (1997), pp. 1–124.

[4] S. H. D. Weaire, N. Pittet and D. Pardal, Steady-state drainage of an aqueous foam, Phys. Rev. Lett.,
71 (1993), pp. 3715–3731.

[5] M. Durand and D. Langevin, Physicochemical approach to the theory of foam drainage, Eur. Phys. J. E, 7
(2002), pp. 35–44.

[6] L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties, Cambridge University Press,
Cambridge, UK, (1997).

[7] S. Hilgenfeldt, S. A. Koehler, and H. A. Stone, Dynamics of coarsening foams: accelerated and
self-limiting drainage, Phys. Rev. Lett., 86 (2001), pp. 4704–4707.

43



Mehdi Nadjafikhah et al., AUT J. Math. Com., 2(1) (2021) 37-44, DOI:10.22060/ajmc.2020.18460.1036

[8] S. Koehler, H. A. Stone, M. Brenner, and J. Eggers, Dynamics of foam drainage, Phys. Rev. E, 58
(1998), pp. 2097–2106.

[9] R. A. Leonard and R. Lemlich, A study of interstitial liquid flow in foam. part I. theoretical model and
application to foam fractionation, AIChE journal, 11 (1965), pp. 18–25.

[10] S. Lie, Theorie der Transformationsgruppen. Erster Abschnitt. Unter Mitwirkung von F. Engel bearbeitet.
Leipzig. Teubner. X + 632 S. gr. 8◦, 1888.

[11] , Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Bearbeitet
und herausgegeben von G. Scheffers. Leipzig. B. G. Teubner. XV + 568 S. 8◦., 1891.

[12] A. H. Nayfeh, Introduction to perturbation techniques. A Wiley-Interscience Publication. New York etc.:
John Wiley & Sons. XIV, 519 p. £ 16.00, 1981.

[13] E. Noether, Invariante variationsprobleme, Nachr. Akad. Wiss. Goett. II, Math.-Phys. Kl., (1918), pp. 235–
257.

[14] R. Prud’homme and S. Khan, Foams: Theory, measurements, and applications, MARCEL DEKKER, INC.,
New York, 1996.

[15] H. Stone, S. Koehler, S. Hilgenfeldt, and M. Durand, Perspectives on foam drainage and the influence
of interfacial rheology, J. Phys.: Condens. Matter, 15 (2003), pp. S283–S290.

[16] S. D. Stoyanov, V. N. Paunov, E. S. Basheva, I. B. Ivanov, A. Mehreteab, and G. Broze, Motion of
the front between thick and thin film: hydrodynamic theory and experiment with vertical foam films, Langmuir,
13 (1997), pp. 1400–1407.

[17] G. Verbist and D. Weaire, A soluble model for foam drainage, Europhys. Lett., 26 (1994), pp. 631–634.

[18] G. Verbist, D. Weaire, and A. Kraynik, The foam drainage equation, J. Phys.: Condens. Matter, 8
(1996), pp. 3715–3731.

[19] D. Weaire, S. Findlay, and G. Verbist, Measurement of foam drainage using AC conductivity, J. Phys.:
Condens. Matter, 7 (1995), pp. L217–L222.

[20] D. Weaire and S. Hutzler, The physics of foams, Oxford University Press, London, UK, 2001.

[21] D. Weaire, S. Hutzler, S. Cox, N. Kern, M. D. Alonso, and W. Drenckhan, The fluid dynamics
of foams, J. Phys.: Condens. Matter, 15 (2002), pp. S65–S73.

[22] D. Weaire, S. Hutzler, G. Verbist, and P. E. A. J., A review of foam drainage, Adv. Chem. Phys.,
102 (1997), pp. 315–374.

[23] J. I. B. Wilson, Essay review-scholarly froth and engineering skeletons, Contemp. Phys., 44 (2003), pp. 153–
155.

Please cite this article using:

Mehdi Nadjafikhah, Omid Chekini, Conservation law and Lie symmetry analysis of Foam
Drainage equation,AUT J. Math. Com., 2(1) (2021) 37-44
DOI: 10.22060/ajmc.2020.18460.1036

44

https://ajmc.aut.ac.ir/article_4161.html

	Introduction
	Lie Symmetry of the Foam Drainage Equation (FDE)
	Group Invariant Solutions
	Optimal system of the Benny equation
	Nonclassical Symmetry of FDE equation
	Symmetry reductions and invariant solution of FDE equation
	Conservation Law of FDE equation
	Direct method to find multipliers of conservation law
	Computation fluxes of conservation laws
	Computation flux of Conservation Laws via the First Homotopy Method


