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ABSTRACT: Let G be a Lie group equipped with a left-invariant Randers metric
F . Suppose that F v and F c denote the vertical and complete lift of F on TG,
respectively. We give the necessary and sufficient conditions under which F v and F c
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1. Introduction

A Randers metric F (x, y) = α(x, y) + β(x, y) is a Finsler metric which is defined as the sum of a Riemannian
metric α(x, y) :=

√
aij(x)yiyj and a 1-form β(x, y) := bi(x)yi such that the Riemannian metric controls the related

form by ||β||α < 1. The history of Randers metrics goes back to G. Randers’s research on general relativity of
4-dimensional Riemannian manifolds. He regarded these metrics not as Finsler metrics, but as affinely connected
Riemannian metrics [15]. This non-Riemannian metric was first recognized as a kind of Finsler metric by Ingarden,
who first named it Randers metric [8]. Since then it has been widely applied in many areas, including electron
optics and biology. In Finsler geometry, the class of Randers metrics is computable and this may lead to a better
understanding of non-Riemannian curvature properties of Finsler metrics.

The study of the Riemannian geometry of tangent bundles started with Sasaki’s paper [16]. He showed that any
Riemannian metric g on the base manifold M induces a Riemannian metric on TM by using vertical and horizontal
lifts. If we replace the horizontal lift with a complete lift then we have another way for constructing Riemannian
metrics on TM . In a series of papers, Yano-Kobayashi used this way and studied many geometric properties of
such lifted metrics (see [9], [20] and [19]). It is well known that the tangent bundle of every Lie group has a natural
Lie group structure [6]. The interpolation between algebraic and geometric properties of Lie groups leads us to
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important results in this field. Therefore, it is natural to study the left invariant Riemannian-Finsler structures on
the tangent bundle of Lie groups.

Let G be a Lie group equipped with a left invariant Riemannian metric α. In [1], by using complete and vertical
lifts of left invariant vector fields, Asgari-Salimi Moghdam introduced a left invariant Riemannian metric α̃ on the
tangent Lie group TG. They find the Levi-Civita connection and sectional curvature of (TG, α̃) in terms of the
Levi-Civita connection and sectional curvature of (G,α). Also, they presented the Levi-Civita connection, sectional
curvature and Ricci tensor formulas of (TG, α̃) in terms of structure constants of the Lie algebra of G. In [2, 14],
they studied the Riemannian geometry of tangent bundle of two families of Lie groups.

Using the left-invariant Riemannian metric α̃ on TG, we define the complete and vertical lifts of a left invariant
Randers metric F = F (x, y) =

√
αx(y, y) + αx(U, y) on G to TG by F c and F v, respectively, and define them by

following

F c
(
(x, y), z̃

)
:=
√
α̃(z̃, z̃) + α̃

(
U c(x, y), z̃

)
, F v

(
(x, y), z̃

)
:=
√
α̃(z̃, z̃) + α̃

(
Uv(x, y), z̃

)
, (1)

where x ∈ G, y ∈ TxG, z̃ ∈ T(x,y)TG and U = β]. Since ‖U c‖α̃ = ‖Uv‖α̃ = ‖U‖α < 1, then F c and F v are
left-invariant Randers metrics on TG. There is still another kind of lifting of vector fields so-called the horizontal
lift. It is remarkable that, the horizontal lift of a vector field on a Lie group G is not necessary a vector field on TG
and it needs to furnish the Lie group G with an extra structure, i.e., connection. Thus, we do not use horizontal
lifts for our purpose.

In Finsler geometry, there are several well-known projective invariants such as Douglas curvature and Weyl
curvature (see [11] and [12]). Douglas curvature is a non-Riemannian projective invariant constructed from the
Berwald curvature. The notion of Douglas metric was proposed by Bácsó-Matsumoto as a generalization of Berwald
metric [4]. Finsler metrics with D = 0 are called Douglas metrics. Other than Douglas metrics, there is another
projective invariant in Finsler geometry, namely

Di
jkl|my

m = Tjkly
i

that is hold for some tensor Tjkl, where Di
jkl|m denotes the horizontal covariant derivatives of Douglas curvature

Di
jkl with respect to the Berwald connection of F . This equation is equivalent to that for any linearly parallel

vector fields u = u(t), v = v(t) and w = w(t) along a geodesic c(t), there is a function T = T (t) such that
d
dt

[
Dċ(u, v, w)

]
= T ċ. The geometric meaning of this identity is that the rate of change of the Douglas curvature

along a geodesic is tangent to the geodesic [11]. For a manifold M , let GDW (M) denotes the class of all Finsler
metrics satisfying the above relation for some tensor Tjkl. In [5], Bácsó-Papp showed that GDW (M) is closed under
projective changes. All generalized Douglas-Weyl Randers metrics are characterized in [11]. Recently, the study on
GDW (M) has attracted many geometricians, see [18] and [17].

In this paper, we study a Lie group G equipped with a left-invariant Randers metric F and find the relation
between the projective geometry of (TG,F c) and (TG,F v) and the projective geometry of (G,F ), where F c and
F v are complete and vertical lift of F , respectively. For this aim, let {Xi}ni=1 be an orthonormal basis of the Lie
algebra g with respect to α. Then, for every vector Z ∈ g := TeG, we put

B(Z) :=

n∑
i=1

[2∇Xi
Xi, Z] + [2Xi,∇Xi

Z] +
1

2
[Xi, ad

∗
ZXi + adZXi] , (2)

where ad∗Z is the adjoint of adZ with respect to α. Also, for any vectors X,Y, Z ∈ g let us define

C(X,Y, Z) :=
〈
U, [∇XY,Z] + [Y,∇XZ]

〉
, (3)

where <,> denotes the inner product on g induced by the Riemannian metric α. Then, we prove the following.

Theorem 1.1. Let G be an n-dimensional Lie group equipped with a left-invariant Randers metric F (x, y) =√
αx(y, y) + αx(U, y) defined by the underlying left-invariant Riemannian metric α and the left-invariant vector

field U such that ‖U‖α < 1. Then the followings hold

(i) F c is a generalized Douglas-Weyl metric on TG if and only if the following hold〈
U,
[
∇XY −

1

2
[X,Y ], Z

]〉
=

1

2n− 1
〈X,Y 〉

n∑
i=1

〈
U, 2[∇Xi

Xi, Z] + [Xi,∇Xi
Z]
〉
,〈

U,
[
[X,Z], Y

]〉
+
〈
U,
[
[X,Y ], Z

]〉
= 0,

where X, Y and Z are arbitrary left-invariant vector fields, and {Xi}ni=1 is an orthonormal basis of the Lie
algebra g with respect to α.
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(ii) F v is a generalized Douglas-Weyl metric on TG if and only if the followings hold

C(X,Y, Z)− 1

2

〈
U,
[
[X,Y ], Z

]
+
[
Y, [X,Z]

]〉
=

1

2n− 1

{
〈X,Y 〉

〈
U,B(Z)

〉
− 〈X,Z〉

〈
U,B(Y )

〉}
,

C(X,Y, Z) +
1

2

〈
U, [Y, ad∗ZX]

〉
=

1

2n− 1
〈X,Y 〉

〈
U,B(Z)

〉
,

C(X,Y, Z) +
1

2

〈
U, [ad∗XY,Z] + [Y, ad∗XZ]

〉
= 0,

where X,Y, Z ∈ g.

The class of two-step nilpotent Lie groups equipped with left-invariant Randers metrics plays an important
role in mathematical physics and geometrical analysis [13][10]. As an application of Theorem 1.1, we characterize
5-dimensional two-step nilpotent Lie groups such that (TG,F c) is a generalized Douglas-Weyl metric (see Theorem
3.5).

2. Preliminaries

Let M be an n-dimensional smooth manifold and TM be its tangent bundle. A Finsler metric on M is a function
F : TM → [0,∞) which has the following properties:
(i) F is smooth on TM0 := TM \ {0};
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;
(iii) for each y ∈ TxM , the following quadratic form gy : TxM × TxM → R on TxM is positive definite

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s,t=0

, u, v ∈ TxM.

For every x ∈M , we denote the Minkowski norm on TxM induced by F with Fx := F |TxM . The Cartan torsion
Cy : TxM × TxM × TxM → R describes the non-Euclidean feature of Fx, which defined by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

The Cartan torsion is the family of C := {Cy}y∈TM0 . The significant of Cartan torsion is C=0 if and only if F is
Riemannian.

For y ∈ TxM0, define mean Cartan torsion Iy : TxM → R by Iy(u) := Ii(y)ui, where Ii := gjkCijk. By Diecke’s
Theorem, F is Riemannian if and only if Iy = 0.

Given a Finsler manifold (M,F ), a global vector field G is induced by F on slit tangent bundle TM0, which in
a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi = Gi(x, y) are called the spray coefficients and given by following

Gi(x, y) :=
1

4
gil
{ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
.

The vector field G is called the associated spray to (M,F ). In local coordinates, a curve c = c(t) is a geodesic of
F if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(c, ċ) = 0.

For a non-zero tangent vector y ∈ TxM0, define By : TxM × TxM × TxM → TxM by By(u, v, w) :=
Bijkl(y)ujvkwl ∂

∂xi |x, where

Bijkl :=
∂3Gi

∂yj∂yk∂yl
.

The tensor B is called the Berwald curvature of Finsler metric F . Then F is called a Berwald metric if B = 0.
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For a non-zero vector y ∈ TxM0, define Dy : TxM×TxM×TxM → TxM by Dy(u, v, w) := Di
jkl(y)uivjwk ∂

∂xi |x,
where

Di
jkl :=

∂3

∂yj∂yk∂yl

[
Gi − 2

n+ 1

∂Gm

∂ym
yi

]
. (4)

D is called the Douglas curvature of F and F is called a Douglas metric if satisfies D = 0.

Let M be an n-dimensional smooth manifold and TM be its tangent bundle. Suppose that X is an arbitrary
vector field on M . Then X defines two types of (local) one-parameter group of diffeomorphisms on TM as follows

Φt(y) := (Txφt)(y), ∀x ∈M, ∀y ∈ TxM, (5)

Ψt(y) := y + tX(x), ∀x ∈M, ∀y ∈ TxM, (6)

where φt is the one-parameter group generated by the vector field X on M and Txϕt denotes the derivation of ϕt at
point x. The infinitesimal generator of one parameter groups of diffeomorphisms Φt and Ψt are called the complete
lift (denoted by Xc) and vertical lift (denoted byXv) of X, respectively.

Let (xi)(i = 1, · · · , n) be a local coordinate system in an open subset U of M . Then we denote the induced
local coordinate system on π−1(U) by (xi, yi)(i = 1, · · · , n), where π : TM −→M is the canonical projection map.
Let X be a vector field on M with local representation X|U =

∑m
i=1 ξ

i∂/∂xi. Then the local representation of its
vertical and complete lifts on TM are as follows:

(X |U )
v

=

m∑
i=1

ξi
∂

∂yi
, (7)

(X |U )
c

=

m∑
i=1

ξi
∂

∂xi
+

m∑
i=1

m∑
j=1

yj
∂ξi

∂xj
∂

∂yi
. (8)

The Lie brackets of vertical and complete lifts of vector fields satisfy the following relations [2]

[Xv, Y v] = 0, [Xc, Y c] = [X,Y ]c, [Xv, Y c] = [X,Y ]v. (9)

Let G be a real n-dimensional connected Lie group with the multiplication denoted by{
µ : G×G −→ G

(x, y) 7−→ xy.

Here the identity element is denoted by e. The left and right translations along y ∈ G are defined by the following{
Ly : G −→ G

x 7−→ yx,
,

{
Ry : G −→ G

x 7−→ xy.

Then, TG is also a Lie group with the following multiplication(
T(x,y)µ

)
(v, w) = (TyLx)(w) + (TxRy)(v), v ∈ TxG, w ∈ TyG, x, y ∈ G. (10)

A vector field X on a Lie group G is said to be left-invariant if it is invariant under every left translation of G.
In [2], it is shown that if X is a left-invariant vector field on G, then Xc and Xv are left-invariant vector fields on
TG. This result together with the local representation of vertical and complete lifts of vector fields show that: if
{X1, · · · , Xn} is a basis for the Lie algebra g of G, then {Xc

1 , · · · , Xc
n, X

v
1 , · · · , Xv

n} is a basis for the Lie algebra g̃
of TG.

Let G be a smooth n-dimensional connected Lie group endowed with a Riemannian metric α = aijdx
i ⊗ dxj .

We denote the inverse of (aij) by (aij). We know that α induces the musical bijection between 1-forms and vector
fields on G, which is denoted by [ : TxG −→ T ∗xG and given by y 7→ αx(y,−). The inverse of [ is denoted by
] : T ∗xG −→ TxG.

Suppose that β = bi(x)dxi is a 1-form on G, in which we have used Einstein’s convention for summation. Then
β] = bi ∂

∂xi , where bi := aijbj . Consider β such that ‖β‖α :=
√
aijbibj < 1. A Randers metric F on G is defined by

F (x, y) = α(x, y) + β(x, y), ∀x ∈M, ∀y ∈ TxM , where

α(x, y) =
√
aijyiyj =

√
αx(y, y), β(x, y) = (β])[(y) = αx(β], y).
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Now, we put

rij :=
1

2
(bi;j + bj;i) , sij :=

1

2
(bi;j − bj;i),

ri := bmrim, si := bmsim, ri0 := rijy
j , si0 := sijy

j , r0 := rjy
j , s0 := sjy

j ,

where “; ” denotes the covariant derivative with respect to the Levi-Civita connection of α.

3. Lifting of Randers Metrics from G to TG

Let G be a Lie group equipped with a left-invariant Randers metric F defined by the underlying left-invariant
Riemannian metric α and the left-invariant vector field U such that ‖U‖α < 1, i.e.,

F (x, y) =
√
αx(y, y) + αx(U, y), ∀(x, y) ∈ TM. (11)

In [2], Asgari-Salimi Moghaddam defined a left-invariant Riemannian metric α̃ on TG by

α̃(Xc, Y c) = α(X,Y ), α̃(Xv, Y v) = α(X,Y ), α̃(Xc, Y v) = 0, (12)

where X and Y are arbitrary vector fields on G. Then, they find its Levi-Civita connection as follows.

Lemma 3.1. ([2]) Let ∇̃ be the Levi-Civita connection induced by α̃ and ∇ be the Levi-Civita connection of α.
Then, for any two X and Y are left-invariant vector fields on G, the following hold

∇̃XcY c = (∇XY )
c
, ∇̃XvY v =

(
∇XY −

1

2
[X,Y ]

)c
,

∇̃XcY v =

(
∇XY +

1

2
ad∗YX

)v
, ∇̃XvY c =

(
∇XY +

1

2
ad∗XY

)v
, (13)

where ad∗X denotes the adjoint of adX with respect to α.

Following [1], we denote the complete and vertical lifts of a left-invariant Randers metric F = α + β on G to TG
by F c and F v, respectively and defined them as follows:

F c
(
(x, y), z̃

)
:=
√
α̃(z̃, z̃) + α̃

(
U c(x, y), z̃

)
, (14)

F v
(
(x, y), z̃

)
:=
√
α̃(z̃, z̃) + α̃

(
Uv(x, y), z̃

)
, (15)

where x ∈ G, y ∈ TxG, z̃ ∈ T(x,y)TG and U = β]. By a simple calculation, we get

‖U c‖α̃ = ‖Uv‖α̃ = ‖U‖α < 1.

It is easy to see that F c and F v are left-invariant Randers metrics on TG.

3.1. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. More precisely, we will study the lifting of the class of Douglas
or generalized Douglas-Weyl Randers metrics F = α+ β on G defined by (11). We suppose that the complete lift
and vertical lift of F are given by (14) and (15), respectively.

In [3], Atshafrouz-Najafi characterized the class of left-invariant Randers metrics of generalized Douglas-Weyl
type. They proved that a left-invariant Randers metric F (x, y) =

√
αx(y, y) + αx(U, y) on a Lie group G is a

generalized Douglas-Weyl metric if and only if for any left-invariant vector fields X, Y and Z on G the following
holds 〈

U, [∇XY,Z] + [Y,∇XZ]
〉

=
1

n− 1
〈X,Y 〉

n∑
i=1

〈
U, [∇XiXi, Z] + [Xi,∇XiZ]

〉
,

− 1

n− 1
〈X,Z〉

n∑
i=1

〈
U, [∇XiXi, Y ] + [Xi,∇XiY ]

〉
, (16)

where {Xi}ni=1 is an orthonormal basis of the Lie algebra g = TeG with respect to α.

By using the above result, we get the following.
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Lemma 3.2. Let G be an n-dimensional Lie group equipped with a left-invariant Randers metric F (x, y) =√
αx(y, y) + αx(U, y) defined by the underlying left-invariant Riemannian metric α and the left-invariant vector

field U such that ‖U‖α < 1. Then F c is a generalized Douglas-Weyl metric on TG if and only if the following holds

〈
U,
[
∇XY −

1

2
[X,Y ], Z

]〉
=

1

2n− 1
〈X,Y 〉

n∑
i=1

〈
U, 2[∇XiXi, Z] + [Xi,∇XiZ]

〉
, (17)〈

U,
[
[X,Z], Y

]〉
+
〈
U,
[
[X,Y ], Z

]〉
= 0, (18)

where X, Y and Z are arbitrary left-invariant vector fields, and {Xi}ni=1 is an orthonormal basis of the Lie algebra
g with respect to α.

Proof. Suppose that {Xi}ni=1 is an orthonormal basis for the Lie algebra g with respect to α. Then {X̃i}2ni=1 =
{Xc

i , X
v
i }ni=1 is an orthonormal basis of the Lie algebra g̃ with respect to α̃. Since F c is a left-invariant Randers

metric on the Lie group TG, for any vector fields X̃, Ỹ , Z̃ ∈ g̃ we have

α̃
(
U c, [∇̃X̃ Ỹ , Z̃] + [Ỹ , ∇̃X̃ Z̃]

)
=

1

2n− 1

{
α̃(X̃, Ỹ )α̃

(
U c,A(Z̃)

)
− α̃(X̃, Z̃)α̃

(
U c,A(Ỹ )

)}
, (19)

where

A(Z̃) :=

2n∑
i=1

[∇̃X̃i
X̃i, Z̃] + [X̃i, ∇̃X̃i

Z̃].

Taking into account (12) and (13), one can easily obtain

α̃
(
U c,A(Zc)

)
=

n∑
i=1

〈
U, 2∇Xi

Xi + [Xi,∇Xi
Z]
〉
, α̃

(
U c,A(Zv)

)
=

n∑
i=1

〈U, 2∇Xi
Xi〉. (20)

Letting X̃ = Xc, Ỹ = Y c and Z̃ = Zc in (19) and using (20), we get

〈
U, [∇XY,Z] + [Y,∇XZ]

〉
=

1

2n− 1

{
〈X,Y 〉

n∑
i=1

〈U, 2[∇Xi
Xi, Z] + [Xi,∇Xi

Z]〉
}

− 1

2n− 1

{
〈X,Z〉

n∑
i=1

〈U, 2[∇Xi
Xi, Y ] + [Xi,∇Xi

Y ]〉
}
, (21)

Let us put X̃ = Xv, Ỹ = Y v and Z̃ = Zc in (19). Then we get (17). Similarly, we have

〈
U,
[
∇XZ −

1

2
[X,Z], Y

]〉
=

1

2n− 1
〈X,Z〉

n∑
i=1

〈
U, 2[∇XiXi, Y ] + [Xi,∇XiY ]

〉
. (22)

Adding (17) and (22), then subtracting the result from (21), we obtain (18). �

A 2-step nilpotent Lie group is a non-abelian connected Lie group such that the lower central series of its Lie
algebra terminates at second step, i.e., [g, [g, g]] = 0. By Lemma 3.2, we conclude the following.

Corollary 3.3. Let G be an n-dimensional two step nilpotent Lie group. Then F c is a generalized Douglas-Weyl
metric if and only if the following holds

〈
U, [∇XY,Z]

〉
=

1

2n− 1
〈X,Y 〉

n∑
i=1

〈
U, 2[∇XiXi, Z] + [Xi,∇XiZ]

〉
. (23)

Now, we characterize F v of generalized Douglas-Weyl type.

Lemma 3.4. Let G be an n-dimensional two step nilpotent Lie group. Then F v is a generalized Douglas-Weyl
metric on TG if and only if the following holds

C(X,Y, Z)− 1

2

〈
U,
[
[X,Y ], Z

]
+
[
Y, [X,Z]

]〉
=

1

2n− 1

{
〈X,Y 〉

〈
U,B(Z)

〉
− 〈X,Z〉

〈
U,B(Y )

〉}
, (24)
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C(X,Y, Z) +
1

2

〈
U, [Y, ad∗ZX]

〉
=

1

2n− 1
〈X,Y 〉

〈
U,B(Z)

〉
, (25)

C(X,Y, Z) +
1

2

〈
U, [ad∗XY,Z] + [Y, ad∗XZ]

〉
= 0, (26)

where B and C defined by (2) and (3), respectively, and X,Y, Z ∈ g.

Proof. Since F v is a left-invariant Randers metric on the Lie group TG, then for any vector fields X̃, Ỹ , Z̃ ∈ g̃ we
have the following

α̃
(
Uv, [∇̃X̃ Ỹ , Z̃] + [Ỹ , ∇̃X̃ Z̃]

)
=

1

2n− 1

{
α̃(X̃, Ỹ )α̃

(
Uv,A(Z̃)

)
− α̃(X̃, Z̃)α̃

(
Uv,A(Ỹ )

)}
. (27)

Taking into account (12) and (13), one can easily obtain

α̃
(
Uv,A(Zc)

)
= 0, α̃

(
Uv,A(Zv)

)
=
〈
U,B(Z)

〉
. (28)

Letting X̃ = Xv, Ỹ = Y v and Z̃ = Zv in (27), we get (24). Similarly, putting X̃ = Xc, Ỹ = Y c and Z̃ = Zv in
(27) implies (25). Finally, putting X̃ = Xv, Ỹ = Y c and Z̃ = Zc in (27), we have (26). �

3.2. 5-Dimensional Two Step Nilpotent Lie Groups

As we mentioned, a 2-step nilpotent Lie group is a non-abelian connected Lie group which its Lie algebra lower
central series vanishes at second step, i.e., [g, [g, g]] = 0. The basic example is the Heisenberg group. Any simply
connected nilpotent Lie group is diffeomorphic to Euclidean space. Nilpotent groups arise in Galois theory, as well
as in the classification of groups.

Here, we are going to consider 5-dimensional two step nilpotent Lie groups. Let G be a connected 5-dimensional
two step nilpotent Lie group with Lie algebra gi whose center is i-dimensional for i = 1, 2, 3. There exists an
orthonormal basis {X1, . . . , X5} for gi with respect to an inner product <,> on gi. These spaces were classified in
[7]. Also, their invariant connections were calculated in [10]. Let us recall some useful facts from [10].

Case 1. (1-dimensional center) Let g1 be the Lie algebra such that its non-zero brackets are as follows:

[X1, X2] = λX5, [X3, X4] = µX5, (29)

where λ ≥ µ > 0 and {X5} is the basis of the center of g1. Suppose that α is the left invariant Riemannian metric
on the Lie group G induced from <,>. By using Kozsul’s formula for the Levi-Civita connection of α, we have the
following table

X1 X2 X3 X4 X5

∇X1 0 1
2λX5 0 0 − 1

2λX2

∇X2 − 1
2λX5 0 0 0 1

2λX1

∇X3
0 0 0 1

2µX5 − 1
2µX4

∇X4
0 0 − 1

2µX5 0 1
2µX3

∇X5
− 1

2λX2
1
2λX1 − 1

2µX4
1
2µX3 0

Table 1: 1-dimensional center (Taken from [10])

Case 2. (2-dimensional center) The Lie algebra structure of g2 is as the following form

[X1, X2] = λX4, [X1, X3] = µX5, (30)

where λ ≥ µ > 0 and {X4, X5} is the basis of the center of g2. In this case, for the Levi-Civita connection of α we
have the following
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X1 X2 X3 X4 X5

∇X1 0 1
2λX4

1
2µ X5 − 1

2λX2 − 1
2µ X3

∇X2
− 1

2λX4 0 0 1
2λX1 0

∇X3
− 1

2µ X5 0 0 0 1
2µ X1

∇X4
− 1

2λX2
1
2λX1 0 0 0

∇X5 − 1
2µ X3 0 1

2µ X1 0 0

Table 2: 2-dimensional center (Taken from [10])

Case 3. (3-dimensional center) The Lie algebra structure of this case is as follows

[X1, X2] = λX3, (31)

where λ > 0 and {X3, X4, X5} is a basis of g3. The Levi-Civita connection of α is given by the following table

X1 X2 X3 X4 X5

∇X1
0 1

2λX3 − 1
2λX2 0 0

∇X2
− 1

2λX3 0 1
2λX1 0 0

∇X3 − 1
2λX1

1
2λX2 0 0 0

∇X4 0 0 0 0 0

0 0 0 0 0 0

Table 3: 3-dimensional center (Taken from [10])

Now, we can give an application of Theorem 1.1.

Theorem 3.5. Let G be a 5-dimensional two step nilpotent Lie group equipped with a left invariant Randers metric
F (x, y) =

√
αx(y, y) + αx(U, y) such that U is in the center of g = TeG. Then (TG,F c) a generalized Douglas-

Weyl Randers metric if and only if the center of g is 3-dimensional. In this case, (TG,F v) is also a generalized
Douglas-Weyl Randers metric.

Proof. We divide the proof into three cases:

Case 1) Note that, in this case we have
∇Xi

Xi = 0.

We assume that U = aX5 with |a| < 1. For each j, k, l = 1, . . . , 5, the following holds

〈
X5,

[
∇Xj

Xk −
1

2
[Xj , Xk], Xl

]〉
=

1

9
〈Xj , Xk〉

5∑
i=1

〈
X5, [Xi,∇Xi

Xl]
〉
. (32)

But for j = k = 1 and l = 5 the left hand side of (32) vanishes while the right hand side is the non-zero scalar
−(µ2 + λ2/2). Thus, F c is not a generalized Douglas-Weyl Randers metric.
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Case 2) We consider U = aX4 + bX5 where
√
a2 + b2 < 1. Note that in this case we have ∇XiXi = 0. Putting it

in (23) yields

〈
aX4 + bX5,

[
∇XjXk −

1

2
[Xj , Xk], Xl

]〉
=

1

9
〈Xj , Xk〉

5∑
i=1

〈
aX4 + bX5, [Xi,∇XiXl]

〉
. (33)

For j = k = 1 and l = 5, (33) reduces to following

0 = −1

2
bµ2.

Hence, we suppose that b = 0. Now, let j = 3, k = 5 and l = 2. Then, the right hand side of (33) vanishes while
the left hand side is the scalar 1

2aµλ which yields a = 0. This is a contradiction. Then F c is not a generalized
Douglas-Weyl Randers metric.

Case 3) We consider U = aX3 + bX4 + cX5 where
√
a2 + b2 + c2 < 1. Note that in this case we have ∇Xi

Xi = 0.
Putting it in (23) yields

〈
aX3 + bX4 + cX5,

[
∇Xj

Xk −
1

2
[Xj , Xk], Xl

]〉
=

1

9
〈Xj , Xk〉

5∑
i=1

〈
aX3 + bX4 + cX5, [Xi,∇Xi

Xl]
〉
. (34)

Setting j = k = 1 and l = 3 in (34) implies that

0 = −1

9
λ2a.

Thus, we have a = 0. Since for any i, k, l the vector
[
∇XjXk − 1

2 [Xj , Xk], Xl

]
is a multiple of X3, then it is

perpendicular to bX4 + cX5. Thus the left hand side of (34) is always zero. Letting a = 0 implies that the right
hand side of (34) is also always zero. This means that F c is a generalized Douglas-Weyl Randers metric.

The same argument shows that for U = bX4 + cX5 the three equations (24), (25) and (26) hold trivially. Thus
F v is also a generalized Douglas-Weyl Randers metric. This completes the proof. �
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