

AUT Journal of Mathematics and Computing

AUT J. Math. Com., 2(1) (2021) 17-25 DOI: 10.22060/ajmc.2020.18833.1041

Original Article

A class of operator related weighted composition operators between Zygmund space

Ebrahim Abbasi*a

^aDepartment of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran

ABSTRACT: Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ be the set of all analytic functions on \mathbb{D} . Let $u, v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . A class of operator related weighted composition operators is defined as follow

$$T_{u,v,\varphi}f(z) = u(z)f(\varphi(z)) + v(z)f'(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}.$$

In this work, we obtain some new characterizations for boundedness and essential norm of operator $T_{u,v,\varphi}$ between Zygmund space.

Review History:

Received:06 August 2020 Accepted:25 September 2020 Available Online:01 February 2021

Keywords:

Boundedness Compactness Essential norm Zygmund space

AMS Subject Classification (2010):

16W25; 46L57; 47B47

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ be the set of all analytic functions on \mathbb{D} . For a function $u \in H(\mathbb{D})$ and analytic self-map φ of $\mathbb{D}(\varphi(\mathbb{D}) \subset \mathbb{D})$, the weighted composition operator uC_{φ} on $H(\mathbb{D})$ is defined by

$$(uC_{\varphi}f)(z) = u(z)f(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}.$$

When $u \equiv 1$, we get the composition operator C_{φ} , which is defined by $C_{\varphi}(f) = f \circ \varphi$. For more information about weighted composition operators see [1, 2, 13, 14].

Let $u, v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . S. Stević and co-authors in [11] defined the operator $T_{u,v,\varphi}$ as follows

$$T_{u,v,\varphi}f(z) = u(z)f(\varphi(z)) + v(z)f'(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}.$$

Let D denote the differentiation operator then $T_{u,v,\varphi} = uC_{\varphi} + vC_{\varphi}D$. More information about the operator $T_{u,v,\varphi}$ can be found in [4, 7, 11, 10, 15, 16, 17]. Product-type operators on some spaces of analytic functions on the unit disk and the unit ball or the upper half-plane have become a subject of increasing interest in the last five years (see, e.g., the following representative papers [3, 5, 6, 9], and the related references therein).

 $E\text{-}mail\ addresses:\ ebrahimabbasi 81@gmail.com$

^{*}Corresponding author.

A function $f \in H(\mathbb{D})$ is said to be in the Zygmund space \mathcal{Z} , if

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|f''(z)|<\infty.$$

The space $\mathcal Z$ becomes a Banach space with the following norm

$$||f||_{\mathcal{Z}} = |f(0)| + |f'(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)|f''(z)| < \infty.$$

The little Zygmund space \mathcal{Z}_0 , is a closed subspace of \mathcal{Z} , consists of all function $f \in \mathcal{Z}$ for which $\lim_{|z| \to 1} (1 - |z|^2)|f''(z)| = 0$.

From [18, Proposition 8], we get the next lemma.

Lemma 1.1. For any $f \in \mathcal{Z}$ and $n \in \mathbb{N}$,

$$||f||_{\mathcal{Z}} \approx \sum_{i=0}^{n} |f^{(i)}(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{n+1} |f^{(n+2)}(z)|.$$

Lemma 1.2 ([14]). *Let* $f \in \mathcal{Z}$. *Then,*

$$|f(z)| \le ||f||_{\mathcal{Z}}$$
 and $|f'(z)| \le ||f||_{\mathcal{Z}} \log \frac{2}{1 - |z|^2}$, $z \in \mathbb{D}$.

Lemma 1.3 ([14]). Let $\{f_n\}$ be a bounded sequence in \mathcal{Z} which converges to zero uniformly on compact subsets of \mathbb{D} . Then

$$\limsup_{n \to \infty} \sup_{z \in \mathbb{D}} |f_n(z)| = 0.$$

Recall that the essential norm of a continuous linear operator $T: X \to Y$ is the distance from T to the compact operators, that is

$$||T||_{e,X\to Y} = \inf\{||T - K|| : K : X \to Y \text{ is compact}\}.$$

Here X and Y are Banach spaces. Notice that $||T||_e = 0$ if and only if T is compact.

Recently, Liu and Yu in [7] studied the boundedness and compactness of operator $T_{u,v,\varphi}$ from the Besov spaces into the weighted-type space H^{∞}_{μ} . In this work, we find some characterizations for boundedness and essential norm of operator $T_{u,v,\varphi}: \mathbb{Z} \to \mathbb{Z}$. As some applications, we get some new characterizations of the boundedness, essential norm and compactness of weighted composition operators between Zygmund space.

Throughout this paper, we say that $A \succeq B$, if there exists a constant C such that $A \geq CB$. The symbol $A \approx B$ means that $A \succeq B \succeq A$.

2. Boundedness

In this section, the boundedness of operator $T_{u,v,\varphi}$ between Zygmund spaces is characterized. We begin with the next lemma.

Lemma 2.1. Let φ be an analytic self-map of \mathbb{D} . Then for any $a \in \mathbb{D}$, there exists a function Ψ_a in \mathcal{Z}_0 such that $\sup_{a \in \mathbb{D}} \|\Psi_a\|_{\mathcal{Z}} < \infty$ and

$$\Psi_a(\varphi(a)) = \Psi_a''(\varphi(a)) = \Psi_a'''(\varphi(a)) = 0 \quad and \quad \Psi_a'(\varphi(a)) = \log \frac{2}{1 - |\varphi(a)|^2}.$$

Proof. If $\varphi(a) = 0$, then set $\Psi_a(z) = \int_0^z \log 2 \ d\xi$, as desired. For any $a \in \mathbb{D}$ with $\varphi(a) \neq 0$ and $k \in \{1, 2, 3\}$, set

$$h_{a,k}(z) = \frac{(k+3)!}{k!} + \int_{\varphi(a)}^{z} \left((3+k) \log \frac{2}{1 - \overline{\varphi(a)}\xi} - \frac{\left(\log \frac{2}{1 - \overline{\varphi(a)}\xi}\right)^{3+k}}{\left(\log \frac{2}{1 - |\varphi(a)|^2}\right)^{2+k}} \right) d\xi.$$

It is obvious that $h_{a,k} \in \mathcal{Z}_0$. In this case

$$\Psi_a(z) = 5h_{a,1}(z) - 6h_{a,2}(z) + 2h_{a,3}(z)$$

as desired. By simple calculation, we get

$$\sup_{a \in \mathbb{D}} ||h_{a,k}||_{\mathcal{Z}} < \infty \quad k \in \{1, 2, 3\}.$$

Hence, $\sup_{a\in\mathbb{D}} \|\Psi_a\|_{\mathcal{Z}} < \infty$.

For simplicity in calculation, we set

$$\widetilde{A_0}(z) = (1 - |z|^2)|u''(z)|, \qquad \widetilde{A_1}(z) = (1 - |z|^2)|2u'(z)\varphi'(z) + u(z)\varphi''(z) + v''(z)|$$

$$\widetilde{A_2}(z) = (1 - |z|^2)|u(z)\varphi'^2(z) + 2v'(z)\varphi'(z) + v(z)\varphi''(z)|, \qquad \widetilde{A_3}(z) = (1 - |z|^2)|v(z)\varphi'^2(z)|. \tag{1}$$

Theorem 2.2. Let $u \in \mathcal{Z}$, $v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . Then the following statements are equivalent.

- (a) The operator $T_{u,v,\varphi}: \mathcal{Z} \to \mathcal{Z}$ is bounded.
- (b) The operator $T_{u,v,\varphi}: \mathcal{Z}_0 \to \mathcal{Z}$ is bounded.

$$(c)\ \max\left\{\sup\nolimits_{z\in\mathbb{D}}\widetilde{A_1}(z)\log\tfrac{2}{1-|\varphi(z)|^2},\ \sup\nolimits_{j\geq 1}j^{-1}\|u\varphi^j+jv\varphi^{j-1}\|_{\mathcal{Z}}\right\}<\infty.$$

(d)
$$\max \left\{ \sup_{z \in \mathbb{D}} \widetilde{A}_1(z) \log \frac{2}{1 - |\varphi(z)|^2}, \sup_{a \in \mathbb{D}} \|T_{u,v,\varphi} f_{1,a}\|_{\mathcal{Z}} \right\} < \infty \text{ and }$$

$$\max \left\{ \sup_{a \in \mathbb{D}} \|T_{u,v,\varphi} f_{2,a}\|_{\mathcal{Z}} < \infty, \quad \sup_{z \in \mathbb{D}} \widetilde{A}_2(z), \quad \sup_{z \in \mathbb{D}} \widetilde{A}_3(z) \right\} < \infty,$$

where
$$f_{i,a}(z) = \frac{(1-|a|^2)^{i+2}}{(1-\overline{a}z)^{i+1}}$$
.

(e)

$$\max\Big\{\sup_{z\in\mathbb{D}}\widetilde{A_1}(z)\log\frac{2}{1-|\varphi(z)|^2},\ \sup_{z\in\mathbb{D}}\frac{\widetilde{A_2}(z)}{(1-|\varphi(z)|^2)},\ \sup_{z\in\mathbb{D}}\frac{\widetilde{A_3}(z)}{(1-|\varphi(z)|^2)^2}\Big\}<\infty.$$

Proof. $(a) \Rightarrow (b)$ It is obvious.

 $(b) \Rightarrow (c)$ For any $a \in \mathbb{D}$, let Ψ_a be the function defined in Lemma 2.1.

$$\widetilde{A_{1}}(a) \log \frac{2}{1 - |\varphi(a)|^{2}} = \widetilde{A_{1}}(a) |\Psi'_{a}(\varphi(a))| = (1 - |a|^{2}) |(T_{u,v,\varphi}\Psi_{a})''(a)| \le ||T_{u,v,\varphi}\Psi_{a}||_{\mathcal{Z}}$$

$$\le ||T_{u,v,\varphi}||_{\mathcal{Z}} \sup_{a \in \mathbb{D}} ||\Psi_{a}||_{\mathcal{Z}} < \infty.$$

From [8], we know that the sequence $\{z^j\}_0^\infty$ is bounded in \mathcal{B}_0 , hence $\{j^{-1}z^j\}_1^\infty$ is bounded in \mathcal{Z}_0 , therefore

$$\sup_{j\geq 1} j^{-1} \|u\varphi^j + jv\varphi^{j-1}\|_{\mathcal{Z}} \leq \|T_{u,v,\varphi}\|_{\mathcal{Z}} \sup_{j\geq 1} \|z^j\|_{\mathcal{B}} < \infty.$$

 $(c) \Rightarrow (d)$ Let $p_i(z) = z^j$. For any $a \in \mathbb{D}$ and i = 1, 2, we have

$$||T_{u,v,\varphi}f_{i,a}||_{\mathcal{Z}} \leq (1-|a|^2)^{i+1} \Big(||u||_{\mathcal{Z}} + \sum_{j=1}^{\infty} \binom{i+j-1}{j} j |a|^j j^{-1} ||T_{u,v,\varphi}p_j||_{\mathcal{W}_{\mu}^n} \Big)$$

$$\leq (1+i2^{i+1}) \max\{ ||u||_{\mathcal{Z}}, \sup_{j\geq 1} j^{-1} ||u\varphi^j + jv\varphi^{j-1}||_{\mathcal{Z}} \}.$$

Since a is arbitrary, $\sup_{a\in\mathbb{D}} \|T_{u,v,\varphi}f_{i,a}\|_{\mathcal{Z}} < \infty$. Applying the operator $T_{u,v,\varphi}$ for $p_2(z)=z^2$, so

$$\widetilde{A_2}(z) \leq \|T_{u,v,\varphi}\|_{\mathcal{Z}} + \widetilde{A_0}(z)|\varphi(z)|^2 + 2\widetilde{A_1}(z)|\varphi(z)| \leq \|T_{u,v,\varphi}\|_{\mathcal{Z}} + \sup_{z \in \mathbb{D}} \widetilde{A_0}(z) + 2\sup_{z \in \mathbb{D}} \widetilde{A_1}(z) < \infty.$$

Therefore, $\sup_{z\in\mathbb{D}}\widetilde{A}_2(z)<\infty$. Similarly by applying the operator $T_{u,v,\varphi}$ for $p_3(z)=z^3$, we get

$$\widetilde{A_3}(z) \le \|T_{u,v,\varphi}\|_{\mathcal{Z}} + \sup_{z \in \mathbb{D}} \widetilde{A_0}(z) + 3\sup_{z \in \mathbb{D}} \widetilde{A_1}(z) + 6\sup_{z \in \mathbb{D}} \widetilde{A_2}(z) < \infty.$$

Hence $\sup_{z \in \mathbb{D}} \widetilde{A}_3(z) < \infty$.

 $(d) \Rightarrow (e)$ Suppose that (d) holds. we set

$$k_{1,a}(z) = \frac{5}{6} f_{1,a}(z) - \frac{1}{3} f_{2,a}(z). \tag{2}$$

Let $|\varphi(a)| > \frac{1}{2}$, so

$$\begin{split} \frac{\widetilde{A_2}(a)|\varphi(a)|^2}{(1-|\varphi(a)|^2)} &\leq \sup_{a\in\mathbb{D}} \|T_{u,v,\varphi}k_{1,\varphi(a)}\|_{\mathcal{Z}} + \sup_{a\in\mathbb{D}} \widetilde{A_0}(a)(1-|\varphi(a)|^2) + \sup_{a\in\mathbb{D}} \widetilde{A_1}(a)|\varphi(a)| \\ &\preceq \sup_{a\in\mathbb{D}} \|f_{1,a}\|_{\mathcal{Z}} + \sup_{a\in\mathbb{D}} \|f_{2,a}\|_{\mathcal{Z}} + \sup_{a\in\mathbb{D}} \widetilde{A_0}(a) + \sup_{a\in\mathbb{D}} \widetilde{A_1}(a) < \infty. \end{split}$$

From previous inequality, $\sup_{|\varphi(a)|>\frac{1}{2}} \frac{\widetilde{A_2}(a)}{(1-|\varphi(a)|^2)} < \infty$. Also by using (d), we obtain

$$\sup_{|\varphi(a)|\leq \frac{1}{2}}\frac{A_2(a)}{(1-|\varphi(a)|^2)}\leq \frac{4}{3}\sup_{|\varphi(a)|\leq \frac{1}{2}}\widetilde{A_2}(a)<\infty.$$

Now we set

$$k_{2,a}(z) = \frac{-1}{6} f_{1,a}(z) + \frac{1}{12} f_{2,a}(z). \tag{3}$$

Let $|\varphi(a)| > \frac{1}{2}$, hence

$$\begin{split} \frac{\widetilde{A}_3(a)|\varphi(a)|^3}{(1-|\varphi(a)|^2)^2} &\leq \sup_{a\in\mathbb{D}} \|T_{u,v,\varphi}k_{2,\varphi(a)}\|_{\mathcal{Z}} + \sup_{a\in\mathbb{D}} \widetilde{A}_0(a)(1-|\varphi(a)|^2) + \sup_{a\in\mathbb{D}} \widetilde{A}_1(a)|\varphi(a)| \\ & \leq \sup_{a\in\mathbb{D}} \|f_{1,a}\|_{\mathcal{Z}} + \sup_{a\in\mathbb{D}} \|f_{2,a}\|_{\mathcal{Z}} + \sup_{a\in\mathbb{D}} \widetilde{A}_0(a) + \sup_{a\in\mathbb{D}} \widetilde{A}_1(a) < \infty. \end{split}$$

So, $\sup_{|\varphi(a)|>\frac{1}{2}}\frac{\widetilde{A_3}(a)}{(1-|\varphi(a)|^2)^2}<\infty.$ Also from (d), we have

$$\sup_{|\varphi(a)|\leq \frac{1}{2}}\frac{\widetilde{A_3}(a)}{(1-|\varphi(a)|^2)^2}\leq \frac{16}{9}\sup_{|\varphi(a)|\leq \frac{1}{2}}\widetilde{A_3}(a)<\infty.$$

 $(e) \Rightarrow (a)$ Let f be arbitrary function in \mathcal{Z} . Using Lemmas 1.1 and 1.2, we have

$$(1 - |z|^{2} |(T_{u,v,\varphi}f)''(z)| \leq ||f||_{\mathcal{Z}} ||u||_{\mathcal{Z}} + ||f||_{\mathcal{Z}} \sup_{z \in \mathbb{D}} \widetilde{A}_{1}(z) \log \frac{2}{1 - |\varphi(z)|^{2}} + ||f||_{\mathcal{Z}} \sup_{z \in \mathbb{D}} \frac{\widetilde{A}_{2}(z)}{(1 - |\varphi(z)|^{2})} + ||f||_{\mathcal{Z}} \sup_{z \in \mathbb{D}} \frac{\widetilde{A}_{3}(z)}{(1 - |\varphi(z)|^{2})^{2}}.$$

Also

$$|(T_{u,v,\varphi}f)(0)| \le ||f||_{\mathcal{Z}} \Big(|u(0)| + |v(0)| \log \frac{2}{1 - |\varphi(0)|^2} \Big)$$

and

$$|(T_{u,v,\varphi}f)'(0)| \le ||f||_{\mathcal{Z}} \Big(|u'(0)| + |u(0)\varphi'(0)| + v'(0)| \log \frac{2}{1 - |\varphi(0)|^2} + \frac{|v(0)|}{1 - |\varphi(0)|^2} \Big)$$

Thus, $T_{u,v,\varphi}: \mathcal{Z} \to \mathcal{Z}$ is bounded. The proof is completed.

3. Essential norm

In this section, some estimates for the essential norm of operator $T_{u,v,\varphi}: \mathcal{Z} \to \mathcal{Z}$ are obtained. For the study of the essential norm, we need the following lemma, which can be proved in a standard way, see, for example [12, Lemma 2.10].

Lemma 3.1. Let φ be an analytic self-map of \mathbb{D} and $S: \mathcal{Z}(\mathcal{Z}_0) \to \mathcal{Z}$ be bounded. Then S is compact if and only if whenever $\{f_k\}$ is bounded in $\mathcal{Z}(\mathcal{Z}_0)$ and $f_k \to 0$ uniformly on compact subsets of \mathbb{D} , then

$$\lim_{k \to \infty} ||Sf_k||_{\mathcal{Z}} = 0.$$

Lemma 3.2. Let $u, v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} , such taht $T_{u,v,\varphi}: \mathcal{Z} \to \mathcal{Z}$ be bounded. Then

$$||T_{u,v,\varphi}||_{e,\mathcal{Z}_0\to\mathcal{Z}} \ge \limsup_{|\varphi(z)|\to 1} \widetilde{A_1}(z) \log \frac{2}{1-|\varphi(z)|^2}$$

where $\widetilde{A}_1(z)$ is defined in (1).

Proof. Let $\{z_i\}$ be a sequence in \mathbb{D} such that $\lim |\varphi(z_i)| = 1$. We assume that for each $i, \varphi(z_i) \neq 0$. First we show that there exists a bounded sequence $\{\Psi_i\}$ in \mathcal{Z}_0 such that, $\{\Psi_i\}$ converge to 0 uniformly on compact subsets of \mathbb{D} and

$$\Psi_i(\varphi(z_i)) = \Psi_i''(\varphi(z_i)) = \Psi_i'''(\varphi(z_i)) = 0, \ \Psi_i'(\varphi(z_i)) = \log \frac{2}{1 - |\varphi(z_i)|^2}.$$

For each i and $k \in \{1, 2, 3\}$, we set

$$h_{i,k}(z) = (k+1)(k+2)(k+3) + \int_{\varphi(z_i)}^{z} \left((3+k) \frac{\left(\log \frac{2}{1-\overline{\varphi(z_i)}\xi}\right)^{2+k}}{\left(\log \frac{2}{1-|\varphi(z_i)|^2}\right)^{1+k}} - (2+k) \frac{\left(\log \frac{2}{1-\overline{\varphi(z_i)}\xi}\right)^{3+k}}{\left(\log \frac{2}{1-|\varphi(z_i)|^2}\right)^{2+k}} \right) d\xi.$$

It is clear that $h_{i,k} \in \mathcal{Z}_0$. Now the following sequence give us all mentioned properties

$$\Psi_i(z) = \frac{1}{12}h_{i,1}(z) - \frac{3}{20}h_{i,2}(z) + \frac{1}{15}h_{i,3}(z).$$

Let $K: \mathcal{Z}_0 \to \mathcal{Z}$ be arbitrary compact operator. By using Lemma 3.1, we have

$$\begin{split} \|(T_{u,v,\varphi}-K)\Psi_i\|_{\mathcal{Z}\to\mathcal{Z}} &\geq \|(T_{u,v,\varphi}-K)\Psi_i\|_{\mathcal{Z}_0\to\mathcal{Z}} \geq \limsup_{i\to\infty} \|T_{u,v,\varphi}\Psi_i\|_{\mathcal{Z}} - \limsup_{i\to\infty} \|K\Psi_i\|_{\mathcal{Z}} \\ &\geq \limsup_{i\to\infty} \widetilde{A_1}(z_i)\log\frac{2}{1-|\varphi(z_i)|^2} = \limsup_{|\varphi(z)|\to 1} \widetilde{A_1}(z)\log\frac{2}{1-|\varphi(z)|^2}. \end{split}$$

Based on the defination of essential norm, we have

$$||T_{u,v,\varphi}||_{e,\mathcal{Z}_0\to\mathcal{Z}} = \inf_K ||T_{u,v,\varphi} - K|| \ge \limsup_{|\varphi(z)|\to 1} \widetilde{A_1}(z) \log \frac{2}{1 - |\varphi(z)|^2}.$$

The proof is completed.

Theorem 3.3. Let $u, v \in H(\mathbb{D})$, φ be an analytic self-map of \mathbb{D} and $T_{u,v,\varphi} : \mathcal{Z} \to \mathcal{Z}$ be bounded. Then

$$||T_{u,v,\varphi}||_{e,\mathcal{Z}\to\mathcal{Z}} \approx \max\{\rho_i\}_{i=0}^2 \approx \max\{\sigma_i\}_{i=0}^2$$

where

$$f_{i,a}(z) = \frac{(1 - |a|^2)^{i+2}}{(1 - \overline{a}z)^{i+1}}, \qquad \sigma_0 = \rho_0 = \limsup_{|\varphi(z)| \to 1} \widetilde{A_1}(z) \log \frac{2}{1 - |\varphi(z)|^2}, \quad \sigma_1 = \limsup_{|a| \to 1} \|T_{u,v,\varphi} f_{1,a}\|_{\mathcal{Z}},$$

$$\sigma_2 = \limsup_{|a| \to 1} \|T_{u,v,\varphi} f_{2,a}\|_{\mathcal{Z}}, \quad \rho_1 = \limsup_{|\varphi(z)| \to 1} \frac{\widetilde{A_2}(z)}{(1 - |\varphi(z)|^2)}, \quad \rho_2 = \limsup_{|\varphi(z)| \to 1} \frac{\widetilde{A_3}(z)}{(1 - |\varphi(z)|^2)^2}$$

and $\widetilde{A_0}(z), \widetilde{A_1}(z), \widetilde{A_2}(z), \widetilde{A_3}(z)$ are defined in (1).

Proof. Let $\{z_j\}_{j\in\mathbb{N}}$ be a sequence in \mathbb{D} such that $\lim |\varphi(z_j)| = 1$ and $k_{i,a}(i=1,2)$ be functions are defined in (2) and (3). It is clear that for all $a \in \mathbb{D}$, $||k_{i,a}||_{\mathcal{Z}} \leq 1 (i=1,2)$ and if $a \neq 0$ then $k_{i,a} \to 0$ uniformly on compact subsets of \mathbb{D} as $|a| \to 1$. So, by using Lemma 3.1 for any compact operator K from \mathcal{Z} into \mathcal{Z} , we get

$$||T_{u,v,\varphi} - K||_{\mathcal{Z} \to \mathcal{Z}} \succeq \limsup_{j \to \infty} ||(T_{u,v,\varphi} - K)k_{i,\varphi(z_j)}||_{\mathcal{Z}} \ge \limsup_{j \to \infty} ||T_{u,v,\varphi}k_{i,\varphi(z_j)}||_{\mathcal{Z}} - \limsup_{j \to \infty} ||Kk_{i,\varphi(z_j)}||_{\mathcal{Z}}$$

$$\ge \limsup_{j \to \infty} \widetilde{A_{i+1}(z_j)|\varphi(z_j)|^2} - \limsup_{j \to \infty} \widetilde{A_0}(z_j)(1 - |\varphi(z_j)|^2) - \limsup_{j \to \infty} \widetilde{A_1}(z_j)|\varphi(z_j)|.$$

From Theorem 2.2(c), we have $\limsup_{|\varphi(z)|\to 1} \widetilde{A}_1(z) = 0$, so from previous inequality and defination of essential norm, we have

$$||T_{u,v,\varphi}||_{e,\mathcal{Z}\to\mathcal{Z}} = \inf_K ||T_{u,v,\varphi} - K||_{\mathcal{Z}\to\mathcal{Z}} \succeq \max\{\rho_1,\rho_2\}.$$

Using Lemma 3.2, we get

$$||T_{u,v,\varphi}||_{e,\mathcal{Z}\to\mathcal{Z}}\succeq \max\{\rho_0,\rho_1,\rho_2\}.$$

Also $||f_{i,a}||_{\mathcal{Z}} \leq 1 (i=1,2)$ and $f_{i,a} \to 0$ uniformly on compact subsets of \mathbb{D} as $|a| \to 1$. So, for any compact operator $K: \mathcal{Z} \to \mathcal{Z}$, by Lemma 3.1, we get $\limsup_{|a| \to 1} ||Kf_{i,a}||_{\mathcal{Z}} = 0$. Hence

$$||T_{u,v,\varphi} - K||_{\mathcal{Z} \to \mathcal{Z}} \succeq \limsup_{|a| \to 1} ||(T_{u,v,\varphi} - K)f_{i,a}||_{\mathcal{Z}} \ge \limsup_{|a| \to 1} ||T_{u,v,\varphi}f_{i,a}||_{\mathcal{Z}} - \limsup_{|a| \to 1} ||Kf_{i,a}||_{\mathcal{Z}} = \sigma_i.$$

By the last inequality and Lemma 3.2, we obtain

$$||T_{u,v,\varphi}||_{e,\mathcal{Z}\to\mathcal{Z}} = \inf_{K} ||T_{u,v,\varphi} - K||_{\mathcal{Z}\to\mathcal{Z}} \succeq \max\{\sigma_0, \sigma_1, \sigma_2\}.$$

Now, we prove that

$$\min\{\max\{\sigma_i\}_{i=0}^2, \max\{\rho_i\}_{i=0}^2\} \succeq \|T_{u,v,\varphi}\|_{e,\mathcal{Z}\to\mathcal{Z}}.$$

For $r \in [0,1)$, we define $K_r f(z) = f_r(z) = f(rz)$. It is clear that $K_r : \mathcal{Z} \to \mathcal{Z}$ is a compact operator with $||K_r|| \le 1$. Also we know that $f_r \to f$ uniformly on compact subsets of \mathbb{D} as $r \to 1$. Let $\{r_j\} \subset (0,1)$ be a sequence such that $r_j \to 1$ as $j \to \infty$. Then for any positive integer j, the operator $T_{u,v,\varphi}K_{r_j} : \mathcal{Z} \to \mathcal{Z}$ is compact. So

$$\limsup_{j \to \infty} \|T_{u,v,\varphi} - T_{u,v,\varphi} K_{r_j}\| \ge \|T_{u,v,\varphi}\|_{e,\mathcal{Z} \to \mathcal{Z}}.$$

Therefore, based on the defination of essential norm it is enough to prove that

$$\min\{\max\{\sigma_i\}_{i=0}^2, \max\{\rho_i\}_{i=0}^2\} \succeq \limsup_{i \to \infty} \|T_{u,v,\varphi} - T_{u,v,\varphi} K_{r_j}\|_{\mathcal{Z} \to \mathcal{Z}}.$$

Let f be arbitrary function in \mathcal{Z} such that $||f||_{\mathcal{Z}} \leq 1$,

$$\| (T_{u,v,\varphi} - T_{u,v,\varphi}K_{r_{j}})f \|_{\mathcal{Z}} \leq \underbrace{(|u(0)| + |u'(0)|)|(f - f_{r_{j}})(\varphi(0))|}_{R_{1}} + \underbrace{(|v(0)| + |u(0)\varphi'(0)| + |v'(0)|)(f - f_{r_{j}})'(\varphi(0))|}_{R_{2}} + \underbrace{(|v(0)| + |u(0)\varphi'(0)| + |v'(0)|)(f - f_{r_{j}})'(\varphi(0))|}_{R_{3}} + \underbrace{\sup_{z \in \mathbb{D}} \widetilde{A}_{0}(z)|(f - f_{r_{j}})(\varphi(z))|}_{L_{0}} + \underbrace{\sup_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{1}(z)|(f - f_{r_{j}})'(\varphi(z))|}_{L_{11}} + \underbrace{\sup_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{1}(z)|(f - f_{r_{j}})'(\varphi(z))|}_{L_{12}} + \underbrace{\sup_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{31}} + \underbrace{\sup_{|\varphi(z)| > r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}} + \underbrace{\underbrace{\sup_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}}}_{L_{32}} + \underbrace{\underbrace{\sup_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}}}_{L_{32}} + \underbrace{\underbrace{\underbrace{\sup_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}}}_{L_{32}} + \underbrace{\underbrace{\underbrace{\sup_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}}}_{L_{32}}}_{L_{32}} + \underbrace{\underbrace{\underbrace{\underbrace{\lim_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}}}_{L_{32}}}_{L_{32}} + \underbrace{\underbrace{\underbrace{\lim_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}}}_{L_{32}}}_{L_{32}} + \underbrace{\underbrace{\lim_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}}}_{L_{32}} + \underbrace{\underbrace{\lim_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}}}_{L_{32}}}_{L_{32}} + \underbrace{\underbrace{\lim_{|\varphi(z)| \leq r_{N}} \widetilde{A}_{3}(z)|(f - f_{r_{j}})''(\varphi(z))|}_{L_{32}}}_{L_{32}}}_{L_{32}}}_{L_{32}}_{L_{32}}_{L_{32}}}_{L_{32}}_{L_{32}}_{L_{32}}_{L_{32}}}_{L_{32}}_{L_{$$

where $N \in \mathbb{N}$ and $r_j \geq \frac{1}{2}$ for all $j \geq N$. Since for any $k \in \mathbb{N}_0$, $(f - f_{r_j})^{(k)} \to 0$ uniformly on compact subsets of \mathbb{D} as $j \to \infty$, from Lemmas 1.2, 1.3 and Theorem 2.2 (d), we get

$$\lim_{j \to \infty} \sup_{j \to \infty} L_0 = \lim_{j \to \infty} \sup_{j \to \infty} L_{t1} = 0 \qquad (t = 1, 2, 3).$$
 (5)

Also

$$L_{12} \leq \underbrace{\sup_{|\varphi(z)| > r_N} \widetilde{A_1}(z) |f'(\varphi(z))|}_{L_{12}^1} + \underbrace{\sup_{|\varphi(z)| > r_N} \widetilde{A_1}(z) |r_j f'(r_j \varphi(z))|}_{L_{12}^2}. \tag{6}$$

No we obtain estimate for L_{12}^1 . Using Lemma 1.2,

$$L_{12}^{1} = \sup_{|\varphi(z)| > r_{N}} \widetilde{A}_{1}(z) |f'(\varphi(z))| \leq \sup_{|\varphi(z)| > r_{N}} \widetilde{A}_{1}(z) ||f||_{\mathcal{Z}} \log \frac{2}{1 - |\varphi(z)|^{2}}.$$

Letting $N \to \infty$, we get

$$\limsup_{j \to \infty} L_{12}^1 \le \sigma_0 = \rho_0. \tag{7}$$

Similarly, we have

$$\limsup_{j \to \infty} L_{12}^2 \le \sigma_0 = \rho_0. \tag{8}$$

On the other hand

$$L_{22} \leq \underbrace{\sup_{|\varphi(z)| > r_{N}} \widetilde{A}_{2}(z)|f^{"}(\varphi(z))|}_{L_{22}^{1}} + \underbrace{\sup_{|\varphi(z)| > r_{N}} \widetilde{A}_{2}(z)|r_{j}f^{"}(r_{j}\varphi(z))|}_{L_{22}^{2}},$$

$$L_{32} \leq \underbrace{\sup_{|\varphi(z)| > r_{N}} \widetilde{A}_{3}(z)|f^{"'}(\varphi(z))|}_{L_{32}^{1}} + \underbrace{\sup_{|\varphi(z)| > r_{N}} \widetilde{A}_{3}(z)|r_{j}f^{"'}(r_{j}\varphi(z))|}_{L_{32}^{2}}.$$

$$(9)$$

Now we estimate $L_{2s}^1(s=2,3)$. From Lemmas 1.1, 1.2, and (2) and (3),

$$\begin{split} L_{s2}^1 &= \sup_{|\varphi(z)| > r_N} \frac{(1 - |\varphi(z)|^2)^{s-1} |f^{(s)}(\varphi(z))|}{|\varphi(z)|^s} \frac{|\varphi(z)|^s \widetilde{A_s}(z)}{(1 - |\varphi(z)|^2)^{s-1}} \preceq \|f\|_{\mathcal{Z}} \sup_{|\varphi(z)| > r_N} \|T_{u,v,\varphi} k_{s,\varphi(z)}\|_{\mathcal{Z}} \\ &\preceq \sup_{|a| > r_N} \|T_{u,v,\varphi} f_{1,a}\|_{\mathcal{Z}} + \sup_{|a| > r_N} \|T_{u,v,\varphi} f_{2,a}\|_{\mathcal{Z}}. \end{split}$$

Letting $N \to \infty$, we get

$$\limsup_{j \to \infty} L_{s2}^1 \leq \rho_{s-1} \quad \text{and} \quad \limsup_{j \to \infty} L_{s2}^1 \leq \max\{\sigma_1, \sigma_2\}. \tag{10}$$

Similarly, we have

$$\limsup_{j \to \infty} L_{s2}^2 \leq \rho_{s-1} \quad \text{and} \quad \limsup_{j \to \infty} L_{s2}^2 \leq \max\{\sigma_1, \sigma_2\}. \tag{11}$$

By using (4), (5), (6), (7), (8), (9), (10) and (11), we obtain

$$\max\{\sigma_0,\sigma_1,\sigma_2\} \succeq \limsup_{j \to \infty} \sup_{\|f\|_{\mathcal{Z}} \le 1} \|(T_{u,v,\varphi} - T_{u,v,\varphi}K_{r_j})f\|_{\mathcal{Z}} = \limsup_{j \to \infty} \|T_{u,v,\varphi} - T_{u,v,\varphi}K_{r_j}\|_{\mathcal{Z} \to \mathcal{Z}}$$

and

$$\max\{\rho_0, \rho_1, \rho_2\} \succeq \limsup_{j \to \infty} \|T_{u,v,\varphi} - T_{u,v,\varphi} K_{r_j}\|_{\mathcal{Z} \to \mathcal{Z}}.$$

Hence,

$$\min\{\max\{\sigma_i\}_{i=0}^2, \max\{\rho_i\}_{i=0}^2\} \succeq \limsup_{j \to \infty} \|T_{u,v,\varphi} - T_{u,v,\varphi} K_{r_j}\|_{\mathcal{Z} \to \mathcal{Z}}.$$

The proof is completed.

Theorem 3.4. Let $u, v \in H(\mathbb{D})$, φ be an analytic self-map of \mathbb{D} and $T_{u,v,\varphi} : \mathcal{Z} \to \mathcal{Z}$ be bounded. Then

$$||T_{u,v,\varphi}||_{e,\mathcal{Z}\to\mathcal{Z}} \approx ||T_{u,v,\varphi}||_{e,\mathcal{Z}_0\to\mathcal{Z}} \approx \max\{\limsup_{|\varphi(z)|\to 1} \widetilde{A}_1(z)\log\frac{2}{1-|\varphi(z)|^2}, \limsup_{j\to\infty} j^{-1}||u\varphi^j+jv\varphi^{j-1}||_{\mathcal{Z}}\}$$

where $\widetilde{A}_1(z)$ is defined in (1).

Proof. Let $p_j(z)=z^j$. It is clear that $\{j^{-1}p_j\}_1^\infty\subset\mathcal{Z}_0$ and $j^{-1}p_j\to 0$ uniformly on compact subsets of \mathbb{D} as $j\to\infty$. So, for any compact operator $K:\mathcal{Z}_0\to\mathcal{Z}$, we have $\lim_{j\to\infty}j^{-1}\|Kp_j\|_{\mathcal{Z}}=0$. Thus,

$$||T_{u,v,\varphi} - K||_{\mathcal{Z}_0 \to \mathcal{Z}} \succeq \limsup_{j \to \infty} j^{-1} ||(T_{u,v,\varphi} - K)p_j||_{\mathcal{Z}} \limsup_{j \to \infty} j^{-1} ||T_{u,v,\varphi}p_j||_{\mathcal{Z}} - \limsup_{j \to \infty} j^{-1} ||Kp_j||_{\mathcal{Z}}$$

$$= \limsup_{j \to \infty} j^{-1} ||u\varphi^j + jv\varphi^{j-1}||_{\mathcal{Z}}.$$

So, by using the last inequality and Lemma 3.2, we get

$$||T_{u,v,\varphi}||_{e,\mathcal{Z}\to\mathcal{Z}} \ge ||T_{u,v,\varphi}||_{e,\mathcal{Z}_0\to\mathcal{Z}} \ge \max\{\limsup_{|\varphi(z)|\to 1} \widetilde{A_1}(z)\log\frac{2}{1-|\varphi(z)|^2}, \limsup_{j\to\infty} j^{-1}||u\varphi^j+jv\varphi^{j-1}||_{\mathcal{Z}}\}.$$

Now we prove the other side. For any fix positive integer $k \geq 1$ and i = 1, 2, since $T_{u,v,\varphi} : \mathcal{Z} \to \mathcal{Z}$ is bounded, from Theorem 2.2, we get

$$\begin{split} & \|T_{u,v,\varphi}f_{i,a}\|_{\mathcal{Z}} \leq C_{i}(1-|a|^{2})^{i+2}\sum_{j=0}^{\infty}\binom{i+j}{j}|a|^{j}\|u\varphi^{j}+jv\varphi^{j-1}\|_{\mathcal{Z}} \\ & = (1-|a|^{2})^{i+2}\bigg(\|u\|_{\mathcal{Z}}+\sum_{j=1}^{k-1}\binom{i+j}{j}j|a|^{j}j^{-1}\|u\varphi^{j}+jv\varphi^{j-1}\|_{\mathcal{Z}}\bigg)+(1-|a|^{2})^{i+2}\sum_{j=k}^{\infty}\binom{i+j}{j}j|a|^{j}j^{-1}\|u\varphi^{j}+jv\varphi^{j-1}\|_{\mathcal{Z}} \\ & \leq 2Q(k-1)\binom{i+k-1}{k-1}(1-|a|^{k})(1-|a|^{2})^{i+1}+i2^{i+2}\sup_{j\geq k}j^{-1}\|u\varphi^{j}+jv\varphi^{j-1}\|_{\mathcal{Z}}, \end{split}$$

where $Q := \max\{\sup_{j>1} j^{-1} \|u\varphi^j + jv\varphi^{j-1}\|_{\mathcal{Z}}, \|u\|_{\mathcal{Z}}\}$. Letting $|a| \to 1$, we obtain

$$\sigma_i = \limsup_{|a| \to 1} \|T_{u,v,\varphi} f_{i,a}\|_{\mathcal{Z}} \le \sup_{j \ge k} j^{-1} \|u\varphi^j + jv\varphi^{j-1}\|_{\mathcal{Z}}.$$

Using last inequality and Theorem 3.3, we get

$$||T_{u,v,\varphi}||_{e,\mathcal{Z}\to\mathcal{Z}} \leq \max\{\limsup_{|\varphi(z)|\to 1} \widetilde{A}_1(z)\log\frac{2}{1-|\varphi(z)|^2}, \sigma_1, \sigma_2\}$$

$$\leq \max\{\limsup_{|\varphi(z)|\to 1} \widetilde{A}_1(z)\log\frac{2}{1-|\varphi(z)|^2}, \limsup_{j\to\infty} j^{-1}||u\varphi^j+jv\varphi^{j-1}||_{\mathcal{Z}}\}.$$

The proof is complete

From Theorems 3.3 and 3.4, we get the following corollary.

Corollary 3.5. Let $u, v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} such that $T_{u,v,\varphi} : \mathcal{Z} \to \mathcal{Z}$ be bounded. Then the following statements are equivalent.

- (a) The operator $T_{u,v,\varphi}: \mathcal{Z} \to \mathcal{Z}$ is compact.
- (b) The operator $T_{u,v,\varphi}: \mathcal{Z}_0 \to \mathcal{Z}$ is compact.

(c)

$$\lim_{|\varphi(z)|\to 1} \sup_{j\to\infty} \widetilde{A_1}(z) \log \frac{2}{1-|\varphi(z)|^2} = \lim_{j\to\infty} \sup_{j\to\infty} j^{-1} ||u\varphi^j + jv\varphi^{j-1}||_{\mathcal{Z}} = 0.$$

(d)

$$\limsup_{|\varphi(z)|\to 1} \widetilde{A_1}(z) \log \frac{2}{1-|\varphi(z)|^2} = \limsup_{|a|\to 1} \|T_{u,v,\varphi}f_{1,a}\|_{\mathcal{Z}} = \limsup_{|a|\to 1} \|T_{u,v,\varphi}f_{2,a}\|_{\mathcal{Z}} = 0.$$

(e)

$$\limsup_{|\varphi(z)|\to 1} \widetilde{A_1}(z) \log \frac{2}{1-|\varphi(z)|^2} = \limsup_{|\varphi(z)|\to 1} \frac{\widetilde{A_2}(z)}{(1-|\varphi(z)|^2)} = \limsup_{|\varphi(z)|\to 1} \frac{\widetilde{A_3}(z)}{(1-|\varphi(z)|^2)^2} = 0.$$

Remark 3.6. Putting $v \equiv 0$ in Theorems 2.2, 3.3, 3.4, and Corollary 3.5, we get some new characterizations for boundedness, essential norm and compactness of operator $uC_{\varphi}: \mathcal{Z} \to \mathcal{Z}$ (see Theorems 3.1 and 4.3 in [14] and Theorems 2.2. and 3.5 in [2]).

References

- [1] C. C. COWEN AND B. D. MACCLUER, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
- [2] K. ESMAEILI AND M. LINDSTRÖM, Weighted composition operators between Zygmund type spaces and their essential norms, Integral Equations Operator Theory, 75 (2013), pp. 473–490.
- [3] Z.-J. JIANG, Product-type operators from Zygmund spaces to Bloch-Orlicz spaces, Complex Var. Elliptic Equ., 62 (2017), pp. 1645–1664.
- [4] Y. Liu and Y. Yu, On a Stević-Sharma operator from Hardy spaces to the logarithmic Bloch spaces, J. Inequal. Appl., (2015), pp. 2015:22, 19.
- [5] ——, Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball, J. Math. Anal. Appl., 423 (2015), pp. 76–93.
- [6] —, On an extension of Stević-Sharma operator from the general space to weighted-type spaces on the unit ball, Complex Anal. Oper. Theory, 11 (2017), pp. 261–288.
- [7] —, On Stević-Sharma type operator from the Besov spaces into the weighted-type space H_{μ}^{∞} , Math. Inequal. Appl., 22 (2019), pp. 1037–1053.
- [8] B. D. MACCLUER AND R. ZHAO, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., 33 (2003), pp. 1437–1458.
- [9] S. Stević and A. K. Sharma, On a product-type operator between Hardy and α-Bloch spaces of the upper half-plane, J. Inequal. Appl., (2018), pp. Paper No. 273, 18.
- [10] S. Stević, A. K. Sharma, and A. Bhat, Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 218 (2011), pp. 2386–2397.
- [11] ——, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 217 (2011), pp. 8115–8125.
- [12] M. TJANI, Compact composition operators on some Möbius invariant Banach spaces, PhD thesis, Michigan State University, 1996.
- [13] H. Wulan, D. Zheng, and K. Zhu, Compact composition operators on BMOA and the Bloch space, Proc. Amer. Math. Soc., 137 (2009), pp. 3861–3868.
- [14] S. YE AND Q. Hu, Weighted composition operators on the Zygmund space, Abstr. Appl. Anal., (2012), pp. Art. ID 462482, 18.
- [15] Y. Yu and Y. Liu, On Stević type operator from H^{∞} space to the logarithmic Bloch spaces, Complex Anal. Oper. Theory, 9 (2015), pp. 1759–1780.
- [16] F. Zhang and Y. Liu, On the compactness of the Stević-Sharma operator on the logarithmic Bloch spaces, Math. Inequal. Appl., 19 (2016), pp. 625–642.
- [17] —, On a Stević-Sharma operator from Hardy spaces to Zygmund-type spaces on the unit disk, Complex Anal. Oper. Theory, 12 (2018), pp. 81–100.
- [18] K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math., 23 (1993), pp. 1143–1177.

Please cite this article using:

Ebrahim Abbasi, A class of operator related weighted composition operators between Zygmund space, AUT J. Math. Com., 2(1) (2021) 17-25 DOI: 10.22060/ajmc.2020.18833.1041

