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1. Introduction

Let D be the open unit disk in the complex plane C and H (D) be the set of all analytic functions on D. For a
function v € H(D) and analytic self-map ¢ of D(p(D) C D), the weighted composition operator uC, on H (D) is
defined by

(uCy f)(2) = u(2)f(p(2)), feHD), zeD.

When v = 1, we get the composition operator Cy,, which is defined by C,(f) = f o . For more information about
weighted composition operators see [1, 2, 13, 14].

Let u,v € H(D) and ¢ be an analytic self-map of D. S. Stevi¢ and co-authors in [11] defined the operator T}, 4 .
as follows

Tuwef(2) = u(2)f(p(2)) +v(2)f (¢(2)), feHD), zeD.

Let D denote the differentiation operator then T, , , = uCy, + vC,D. More information about the operator T, ,
can be found in [4, 7, 11, 10, 15, 16, 17]. Product-type operators on some spaces of analytic functions on the unit
disk and the unit ball or the upper half-plane have become a subject of increasing interest in the last five years
(see, e.g., the following representative papers [3, 5, 6, 9], and the related references therein).
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A function f € H(D) is said to be in the Zygmund space Z, if
sup(1 — [2[*)] /" (2)] < o0.
z€D

The space Z becomes a Banach space with the following norm

1z = [£O)] + [£(0)] + sup(l - 21" (2)] < 0.

The little Zygmund space Zp, is a closed subspace of Z, consists of all function f € Z for which lim,_;(1 —
21*)].f"(2)| = 0.

From [18, Proposition 8], we get the next lemma.

Lemma 1.1. For any f € Z andn € N,
11z~ Y 1F90)] + Slelg(l — 23" ()],
i=0 z
Lemma 1.2 ([14]). Let f € Z. Then,

2
fEI<fllz and [f'(2)] 2 [If]lzlog TTpE C© D.

Lemma 1.3 ([14]). Let {f.} be a bounded sequence in Z which converges to zero uniformly on compact subsets
of D. Then
lim sup sup | f(2)] = 0.
n—oo zeb
Recall that the essential norm of a continuous linear operator T : X — Y is the distance from T to the compact
operators, that is
IT|le. x>y =inf{||T — K|| : K : X — Y is compact}.

Here X and Y are Banach spaces. Notice that ||T||. = 0 if and only if T is compact.

Recently, Liu and Yu in [7] studied the boundedness and compactness of operator T, , , from the Besov spaces
into the weighted-type space H,;°. In this work, we find some characterizations for boundedness and essential norm
of operator Ty 4, : Z — Z. As some applications, we get some new characterizations of the boundedness, essential
norm and compactness of weighted composition operators between Zygmund space.

Throughout this paper, we say that A > B, if there exists a constant C' such that A > CB. The symbol A ~ B
means that A = B = A.

2. Boundedness

In this section, the boundedness of operator 7, ., between Zygmund spaces is characterized. We begin with the
next lemma.

Lemma 2.1. Let ¢ be an analytic self-map of D. Then for any a € D, there exists a function W, in Zy such that
Stbuen | Wallz < 00 and

V.(0(@) = Vi(o(@) = ¥ (pla) =0 and W,(o(0)) = log
Proof. If p(a) = 0, then set ¥, (z) = foz log 2 d¢, as desired. For any a € D with ¢(a) # 0 and k € {1,2,3}, set
harta) = LR [ (34110 —2— - 8 Y
k! o(a) 1—p(a)¢  (log =pmp)*
It is obvious that h ; € Zp. In this case
U, (2) = Bhg,1(2) — 6hg2(2) + 2he 3(2)
as desired. By simple calculation, we get
sup |hakllz < oo ke€{1,2,3}.
a€D
Hence, sup,cp ||¥allz < o0. O
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For simplicity in calculation, we set
Ao(2) = (A= P (2)],  Ai(2) = (1 = |2P)]2u/ ()¢ (2) + ul2)¢” (2) + 0" (2)]
Ax(2) = (1= [2P)[u(2)e”” (2) + 20/ ()¢ (2) T ()" ()], As(2) = (1= |2l)e(2)e (2)]- (1)

Theorem 2.2. Let uw € Z, v € H(D) and ¢ be an analytic self-map of D. Then the following statements are
equivalent.

(a) The operator Ty, 4, : Z2 — Z is bounded.
(b) The operator Ty ., : Z0 — Z is bounded.

(c) max{supzeD Aq(2)log ﬁ, supj21j_1|\ug0j —&—jv(pj_le} < o0.

(d) max { sup. cp A1 (=) og 2oy, Wep [ Tuw s frallz | < o0 and

max{sup | T 0,0 f2,all 2 < 00, sup Ay(z), sup Z;,(z)} < 00,
ach z€D z€D

_lal?)it2
here Jua(2) = U822,
(¢)

max sup;lv 2) log , sup , sup
{sup A log T s s D e S e

As(2) Ay(2) b <o

Proof. (a) = (b) It is obvious.
(b) = (¢) For any a € D, let ¥, be the function defined in Lemma 2.1.

(@) g T s = D@L (E@)] = (1= o) (T o) (0)] € [T ol

< | Tuw,pllz sup [al 2 < oo
a€D

From [8], we know that the sequence {27}5° is bounded in By, hence {j127}5° is bounded in Zy, therefore

sup " Jug? + jve? Tz < || Tuwellz sup ||| < oo
i>1 i>1

(¢) = (d) Let p;j(z) = 27. For any a € D and i = 1,2, we have

oo . .
; i+ =1\ . .
oo hallz < =10y (Jullz + 3 (77 )l i T il )
j=1
< (4 2 max{flulz, sups~fug? + o 2).
i>1

Since a is arbitrary, sup,cp || Tu,v,pfia || 2< 00. Applying the operator T, ., for pa(2) = 22, so

A5(2) < [Tl z + Ao(2)e(2)? + 241(2)|0(2)] < ITuwellz + sug?ivo(Z) + 2sugf4v1(Z) < oo.
ze ze

Therefore, sup,cp ;1/2(2) < oco. Similarly by applying the operator T, ., for ps3(z) = 23, we get

As(2) < ||Tuw ez + sup Ag(2) + Bsup Ay (2) + 6sup As(2) < 0.
z€D z€D z€D

Hence sup,cp As(z) < oo.
(d) = (e) Suppose that (d) holds. we set

Fra(z) = 2 f1a(2) = 5f2a(2). @
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Let |¢(a)| > 1, so

Az(a)lp(a)? T 2 T
e < sup || Tu,v,0k1 0(a + sup Ag(a)(1 — |o(a + sup A1 (a)|p(a
(1—|S0((1)|2) aEDH eh1,o( )HZ b 0( )( | ( )| ) b 1( )l ( )l
2 sup || frallz + sup || f2allz + sup Ag(a) + sup A (a) < oo.
ach ach a€D a€D
From previous inequality, supj,q)|> 1 % < 00. Also by using (d), we obtain

Az(a)

_— sup X(a) < 0.
o)<t (1= le(a)]?) ?

lo(a)|<3

4
< =
-3

Now we set
baa(2) = = fra(2) + = foa(2)
2,a\%) = 6 1,a{%Z 12 2,a\%)-
Let |¢(a)| > £, hence

As(a)|o(a)® . . -
1 _ 1) ]2)2 S su TUU k a +Su A a 1 — a +Su A a a
1 — Jp(a)]2)? QEBH wek2p 2 sup o(a)(1 = |p(a)l*) sup (a)|e(a)]

2 sup [ fi,allz + sup || f2,allz + sup Ao(a) + sup Ay (a) < oco.
acD achD a€ch a€hD

S0, SUP|y(a)>1 % < 00. Also from (d), we have

As 1 —~
sup % < 16 sup As(a) < oo.
w@l<t L= le@)? = 9 | q)<1

(e) = (a) Let f be arbitrary function in Z. Using Lemmas 1.1 and 1.2, we have

(= eI Tonie ) ) 2 1Nl + 171z 50p A 2) log o

+fllz zeg 1- |<p(z)|2) +1fllz zeg (1 _ |¢(z)|2)2.
Also
(T, F)(0)] < ||f|\2(|u(0)| +[v(0)[log %)
and

(T YO = 11121 O)]+ (O (0) + 'O} ok 257 + 1oz

Thus, Ty v, : £ — 2 is bounded. The proof is completed.

3. Essential norm

In this section, some estimates for the essential norm of operator 1), ., : Z — Z are obtained. For the study of the
essential norm, we need the following lemma, which can be proved in a standard way, see, for example [12, Lemma

2.10].

Lemma 3.1. Let ¢ be an analytic self-map of D and S : Z(Zy) — Z be bounded. Then S is compact if and only

if whenever {fi} is bounded in Z(Zy) and fr — 0 uniformly on compact subsets of D, then

lim ||Sfullz = 0.
k—o0
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Lemma 3.2. Let u,v € H(D) and ¢ be an analytic self-map of D, such taht Ty, : Z — Z be bounded. Then

ITwv.0lle,20—2 > limsup ;lvl(z) log .
ple=om lo(2)|—1 1 —fp(2)[?

where :4:(2) is defined in (1).

Proof. Let {z;} be a sequence in D such that lim |p(z;)| = 1. We assume that for each i, ¢(z;) # 0. First we show
that there exists a bounded sequence {U;} in Z; such that, {¥;} converge to 0 uniformly on compact subsets of D
and

" 2
\\ ) = ¢’ ) = WU, ) = 0/ ) = 1
Z(SD(ZZ)) 7 (W(z’t)) (3 ((p(zz)) 07 1(@(Z1)) Og 1 _ ‘SO(Z'L)P
For each i and k € {1,2,3}, we set
2 (log — Q(z_)g k log — Q(Z )5)3+k
hir(z) = (k+ 1)k +2)(k +3) + / (+5) (24 h) L) de.
w0 log T—oGor (log =tz

It is clear that h; j € Zy. Now the following sequence give us all mentioned properties

1 3 1
\I’Z(Z) = ﬁh“(z) — %hl’g(z) + Tshl)g(z)

Let K : Zy — Z be arbitrary compact operator. By using Lemma 3.1, we have

[(Tuwp — K)Villzo2 2 [[(Tu,e — K)Villzo—z > limsup [Ty, Villz — lirllsup K=z

1— 00
— — 2
> limsup A;(z;) log ————— = limsup A;(z) log ———.
i—o0 L—1p(z)I?  |o(z)=1 1 —[p(2)?
Based on the defination of essential norm, we have
| Tuviplle. 202 = inf | o — K| > limsup A (2) log 7— .
plesom K v lo(2)|—1 L —[p(2)[?

The proof is completed. O

Theorem 3.3. Let u,v € H(D), ¢ be an analytic self-map of D and T, ., : Z — Z be bounded. Then

1Tu0,0lle,z—2 ~ max{pi}fzo ~ max{ai}fzo

where
frale) = L1 timsup 3 (2)| ltn 50 T o
i,a\%) = 7o — N1 0p = po = 1msup A1(2) 0g —————~+5, 01 = lISup vllallZ,
(1 —az)+t lo(2)| =1 L —[p(2)[? ajs1 e
. . As(2) . A3(2)
o9 =limsup || Ty vofoallz, p1 = limsup ————, p2 = limsup ————~——
la|—1 v lo()—1 (1= |@(2)]?) lo(z)|—1 (1 = |e(2)]?)?

and %(z),m(z),;g(z),g(z) are defined in (1).

Proof. Let {z;},en be a sequence in D such that lim |p(z;)| = 1 and k; (¢ = 1,2) be functions are defined in (2)
and (3). It is clear that for all a € D, ||k; o||z = 1(¢ = 1,2) and if @ # 0 then k; , — 0 uniformly on compact subsets
of D as |a| — 1. So, by using Lemma 3.1 for any compact operator K from Z into Z, we get

1T, — Kllzmz = limsup || (Tu,v,e — K)ki,go(zj)ﬂz > lim sup ||Tu,y,¢/€¢,¢(zj)||z — lim sup \\Kki,¢(zj)||z
j—o00 Jj—o0 Jj—ro0

A, |2 — —
> lim sup M — limsup Ag(z;)(1 — [p(2;)[?) — limsup Ay (2;)](z;)].
jooo (L=le(z)?)" joeo j—roo
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From Theorem 2.2(c), we have limsup, (.1 ;lvl(z) = 0, so from previous inequality and definaition of essential
norm, we have

HTu,v,ga| e, Z—Z — I%f ||Tu,v,<p - K”Z—)Z t maX{p1,p2}-

Using Lemma 3.2, we get

||Tu>v,<p ||e,ZHZ = max{po, p1, P2}

Also [|fiallz = 1(: = 1,2) and f; , — 0 uniformly on compact subsets of D as |a| — 1. So, for any compact operator
K :Z — Z, by Lemma 3.1, we get limsup,_,1 [|K fial|z = 0. Hence

1Tw0,o — Kllz—z = limsup [|[(Ty,v,p — K) fiallz > limsup | Ty, fiallz — limsup [| K fi o| 2z = 0.

al—1 la]—1 la|—1
By the last inequality and Lemma 3.2, we obtain
1 Tuwplle, 22 = Wf [T — Kl z— 2 = max{oo, 01, 02}
Now, we prove that
min{max{o,}2 g, max{pi} 2o} = [Tup ez

For r € [0,1), we define K, f(2) = fr(z) = f(rz). It is clear that K, : Z — Z is a compact operator with || K| < 1.
Also we khow that f, — f uniformly on compact subsets of D as r — 1. Let {r;} C (0,1) be a sequence such that
r; — 1 as j — oo. Then for any positive integer j, the operator Ty, , K, : Z — Z is compact. So

hm sup ”Tu,'u,<p - Tu,v,goK'r'j ” > ||Tu,v,tp||e,Z—>Z~
j—oo

Therefore, based on the defination of essential norm it is enough to prove that

min{max{ai}?zo, max{p; 12:0} = limsup |Tw0,0 = TuwoKr, ||z 2.
j—o0

Let f be arbitrary function in Z such that ||f]|z < 1,

(T = Tuwo K ) fllz < ([u(0)] + [ (O))I(f = fr,)(0(0)] + [0(0)¢" ()II(f = fr,)" ((0))]

Ry Ro2
+ ([v(0)] + [u(0)¢' (0)] + |U’(0)|)(f—frj)’(w(o))lJrSleleTo(z)l(f—frj)(w(Z))H‘ Sup AL(2)(f = fr,) (2(2))]
z P(2Z)|ISTN
e Lo L1
+ osup AL = ) (@) + sup Aa(2)[(f — fr) (0())|+  sup  Aa(2)|(f — fr,)" ((2))]
lo(2)[>rN lo(2)|<rN lo(2)[>rN
Li2 Loy Lao
+ osup As()|(f = )" ()| +  sup As(2)|(f = £r,)" (9(2))] (4)
lo(z)I<rn lp(2)|>rn
L3 Lo
where N € N and 1y > % for all j > N. Since for any &k S Np,

(f — frj)(k) — 0 uniformly on compact subsets of D as j — oo, from Lemmas 1.2, 1.3 and Theorem 2.2 (d),
we get

limsup R; = limsup Ly = limsup Ly =0 (t=1,2,3). (5)
Jj—ro0 j—o0 j—o0
Also
Lip< suwp A () + sup Ai(z)lrf (rje(2))]. (6)
le(2)|>rn lp(z)|>rN
Lis L%,
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No we obtain estimate for Li,. Using Lemma 1.2,

Lh= s Ai(a)|f(p(=)| < sup E<Z>Hf“210g1—\iW'

lp(z)[>rN lp(2)|>rn

Letting N — oo, we get

lim sup Li, < 00 = po.
j—o0o

Similarly, we have

lim sup L}, = 09 = po.
j—o0

On the other hand

Ly < sup  A()f (p(2)+ sup  As(2)lrif (rj0(2))],

lp(z)|>rN lp(z)|>rN
L, L3,
Lsz < sup  As(2)|f (p(2)|+ sup  As(z)|rjf (rje(2))].
lp(2)|>rN lp(2)|>rN
Li, L3,

Now we estimate Li (s = 2,3). From Lemmas 1.1, 1.2, and (2) and (3),

1— ()2 ) (p(2)] le(z)]* As(2)

L= swp Wz s [Tamokeorlls
2 @ lo(2)]* (1 [p(z)P)*—1 o) oy e )
< sup [|Tuwefiallz+ sup [Tuvofoallz

la|>rN la|>rn

Letting N — oo, we get

limsupLl, < ps—1 and limsup L, < max{cy,00}.
j—ro0 j—o00

Similarly, we have

limsup L2, < ps_; and limsup L2, < max{o;,02}.
Jj—o0 j—o00

By using (4), (5), (6),(7), (8), (9), (10) and (11), we obtain

maX{an 01702} = lim sup sup ||(Tu,v,ap - Tu,U,LPKTj)f”Z = lim sup HTu,v,go - Tu,v,goK'rj HZHZ
J=oo |fllz<1 Jj—oo

and

maX{ﬂOv P1, p2}’ t hm sup ”Tu,v,tp - Tu,v,@Krj ||Z~>Z-

J—00

Hence,

min{max{o;}7_o, max{p;}i_o} = limsup | T — Tu o Ko, 22
j—o0

The proof is completed.

Theorem 3.4. Let u,v € H(D), ¢ be an analytic self-map of D and T,y : 2 — Z be bounded. Then

e.Zo—2 ~ max{lim sup A (2)log limsupj_l\\ug@j +jop’ 2}

Tuwolle,z—z = (| Tu,
|| u,v <p||e - w,v,p lo(2)|—1 1- |90(Z)‘27 J—0

where ;lvl(z) is defined in (1).
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Proof. Let p;(z) = zJ. Tt is clear that {j_lpj}‘fo C Zp and j_lpj — 0 uniformly on compact subsets of D as
j — 0. So, for any compact operator K : Zy, — Z, we have lim; o j || Kp;||z = 0. Thus,

|0 = Kll 2oz = limsup j = |[(T. — K)p; |l 2 limsup j~ | T v opjll 2 — limsup 5| K| 2
j—oo j—o0 j—o0

= limsup j = |lug’ + jve’ ||z

J—00

So, by using the last inequality and Lemma 3.2, we get

ITuwillezoz > 1Tuwpllezomz = max{limsup A (2) log ———— limsup j~|lug’ + jug’ | z}.
lo(2)|—1 L—]p(2)]?" joe

Now we prove the other side. For any fix positive integer £ > 1 and i = 1,2, since T 4, : Z — Z is bounded, from
Theorem 2.2, we get

pvra = (1 + 0\, gn i i
T fiallz < Ci(1— la >+2Z( ' )|a|ﬂ||uw+ywﬂ "z

Jj=0

k-1 ,. . 0o . .
2 Z+] . P . . - 2 Z+] . . . . -
=(1~ |al >”2<Ilullz+2( ; )ﬂaw Uug? + jogd 1||z>+<1—|a| Y”Z( ; )Jlaljj g’ + o)z
Jj=1 j=k

i+k—1

S

)@= )0 = ) 4 2 s g+ o
3>
where Q := max{sup,>, 7" |ue’ + jup’ 7!z, ||lullz}. Letting |a| — 1, we obtain

o; =limsup | Tyv,e fiallz = supj~tlug’ + jop’ | z.
|a]—1 >k

Using last inequalitty and Theorem 3.3, we get

| T vplle.z—z = max{limsup A;(z)log ———. 01,00}
woele=s lo(2)| 1 1— ()7
= max{lim sup :élvl(z) log ————, limsupj ' |lug’ + joe? Y|z}
le(2)| =1 1—[e(2)?" " joo

The proof is complete U
From Theorems 3.3 and 3.4, we get the following corollary.

Corollary 3.5. Let u,v € H(D) and ¢ be an analytic self-map of D such that Ty, : Z — Z be bounded. Then
the following statements are equivalent.

(a) The operator T, ,: Z — Z is compact.
(b) The operator Tuw,p 2 20 — Z 18 compact.

(c)

N 2 ) )
limsup A;(z)log ———— = limsup j ' [jug’ + jop’ !z =0.
1—[p(2)]?

lp(2)|—1 j—yo0

(d)

. -~ 2 . .
limsup A;(z) log ————= = limsup || Ty, f1,allz = limsup [| Ty o f2.4llz = 0.
lp(2)|=1 1 —|p(2)] la|—1 a|—1
(e)
= . As(2) . As(2)
limsup A;(2)log ————— = limsup —————— = limsup —————~—— = 0.
lo(2)|—1 L=1lp(2)?  joi)=1 A= 19(2)?)  |o)=1 (1= lp(2)]?)?

Remark 3.6. Putting v = 0 in Theorems 2.2,3.3,3.4, and Corollary 3.5, we get some new characterizations for
boundedness, essential norm and compactness of operator uC,, : Z — Z (see Theorems 3.1 and 4.3 in [14] and

Theorems 2.2. and 3.5 in [2]).
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