AUT Journal of Mathematics and Computing

A class of operator related weighted composition operators between Zygmund space

Ebrahim Abbasi ${ }^{* a}$
${ }^{a}$ Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran

ABSTRACT: Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ be the set of all analytic functions on \mathbb{D}. Let $u, v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D}. A class of operator related weighted composition operators is defined as follow

$$
T_{u, v, \varphi} f(z)=u(z) f(\varphi(z))+v(z) f^{\prime}(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D} .
$$

In this work, we obtain some new characterizations for boundedness and essential norm of operator $T_{u, v, \varphi}$ between Zygmund space.

Review History:

Received:06 August 2020
Revised:25 September 2020
Accepted:25 September 2020
Available Online:01 February 2021

Keywords:

Boundedness
Compactness
Essential norm
Zygmund space

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ be the set of all analytic functions on \mathbb{D}. For a function $u \in H(\mathbb{D})$ and analytic self-map φ of $\mathbb{D}(\varphi(\mathbb{D}) \subset \mathbb{D})$, the weighted composition operator $u C_{\varphi}$ on $H(\mathbb{D})$ is defined by

$$
\left(u C_{\varphi} f\right)(z)=u(z) f(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D} .
$$

When $u \equiv 1$, we get the composition operator C_{φ}, which is defined by $C_{\varphi}(f)=f \circ \varphi$. For more information about weighted composition operators see $[1,2,13,14]$.

Let $u, v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D}. S. Stević and co-authors in [9] defined the operator $T_{u, v, \varphi}$ as follows

$$
T_{u, v, \varphi} f(z)=u(z) f(\varphi(z))+v(z) f^{\prime}(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}
$$

Let D denote the differentiation operator then $T_{u, v, \varphi}=u C_{\varphi}+v C_{\varphi} D$. More information about the operator $T_{u, v, \varphi}$ can be found in $[4,7,9,10,15,16,17]$. Product-type operators on some spaces of analytic functions on the unit disk and the unit ball or the upper half-plane have become a subject of increasing interest in the last five years (see, e.g., the following representative papers [3,5,6,11], and the related references therein).

A function $f \in H(\mathbb{D})$ is said to be in the Zygmund space \mathcal{Z}, if

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z)\right|<\infty .
$$

The space \mathcal{Z} becomes a Banach space with the following norm

$$
\|f\|_{\mathcal{Z}}=|f(0)|+\left|f^{\prime}(0)\right|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z)\right|<\infty .
$$

[^0]The little Zygmund space \mathcal{Z}_{0}, is a closed subspace of \mathcal{Z}, consists of all function $f \in \mathcal{Z}$ for which $\lim _{|z| \rightarrow 1}(1-$ $\left.|z|^{2}\right)\left|f^{\prime \prime}(z)\right|=0$.

From [18, Proposition 8], we get the next lemma.
Lemma 1.1. For any $f \in \mathcal{Z}$ and $n \in \mathbb{N}$,

$$
\|f\|_{\mathcal{Z}} \approx \sum_{i=0}^{n}\left|f^{(i)}(0)\right|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{n+1}\left|f^{(n+2)}(z)\right|
$$

Lemma 1.2 ([14]). Let $f \in \mathcal{Z}$. Then,

$$
|f(z)| \leq\|f\|_{\mathcal{Z}} \quad \text { and } \quad\left|f^{\prime}(z)\right| \preceq\|f\|_{\mathcal{Z}} \log \frac{2}{1-|z|^{2}}, \quad z \in \mathbb{D}
$$

Lemma 1.3 ([14]). Let $\left\{f_{n}\right\}$ be a bounded sequence in \mathcal{Z} which converges to zero uniformly on compact subsets of \mathbb{D}. Then

$$
\limsup _{n \rightarrow \infty} \sup _{z \in \mathbb{D}}\left|f_{n}(z)\right|=0
$$

Recall that the essential norm of a continuous linear operator $T: X \rightarrow Y$ is the distance from T to the compact operators, that is

$$
\|T\|_{e, X \rightarrow Y}=\inf \{\|T-K\|: K: X \rightarrow Y \text { is compact }\}
$$

Here X and Y are Banach spaces. Notice that $\|T\|_{e}=0$ if and only if T is compact.
Recently, Liu and Yu in [7] studied the boundedness and compactness of operator $T_{u, v, \varphi}$ from the Besov spaces into the weighted-type space H_{μ}^{∞}. In this work, we find some characterizations for boundedness and essential norm of operator $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$. As some applications, we get some new characterizations of the boundedness, essential norm and compactness of weighted composition operators between Zygmund space.

Throughout this paper, we say that $A \succeq B$, if there exists a constant C such that $A \geq C B$. The symbol $A \approx B$ means that $A \succeq B \succeq A$.

2. Boundedness

In this section, the boundedness of operator $T_{u, v, \varphi}$ between Zygmund spaces is characterized. We begin with the next lemma.

Lemma 2.1. Let φ be an analytic self-map of \mathbb{D}. Then for any $a \in \mathbb{D}$, there exists a function Ψ_{a} in \mathcal{Z}_{0} such that $\sup _{a \in \mathbb{D}}\left\|\Psi_{a}\right\|_{\mathcal{Z}}<\infty$ and

$$
\Psi_{a}(\varphi(a))=\Psi_{a}^{\prime \prime}(\varphi(a))=\Psi_{a}^{\prime \prime \prime}(\varphi(a))=0 \quad \text { and } \quad \Psi_{a}^{\prime}(\varphi(a))=\log \frac{2}{1-|\varphi(a)|^{2}}
$$

Proof. If $\varphi(a)=0$, then set $\Psi_{a}(z)=\int_{0}^{z} \log 2 d \xi$, as desired. For any $a \in \mathbb{D}$ with $\varphi(a) \neq 0$ and $k \in\{1,2,3\}$, set

$$
h_{a, k}(z)=\frac{(k+3)!}{k!}+\int_{\varphi(a)}^{z}\left((3+k) \log \frac{2}{1-\overline{\varphi(a)} \xi}-\frac{\left(\log \frac{2}{1-\overline{\varphi(a) \xi}}\right)^{3+k}}{\left(\log \frac{2}{1-|\varphi(a)|^{2}}\right)^{2+k}}\right) d \xi .
$$

It is obvious that $h_{a, k} \in \mathcal{Z}_{0}$. In this case

$$
\Psi_{a}(z)=5 h_{a, 1}(z)-6 h_{a, 2}(z)+2 h_{a, 3}(z)
$$

as desired. By simple calculation, we get

$$
\sup _{a \in \mathbb{D}}\left\|h_{a, k}\right\|_{\mathcal{Z}}<\infty \quad k \in\{1,2,3\}
$$

Hence, $\sup _{a \in \mathbb{D}}\left\|\Psi_{a}\right\|_{\mathcal{Z}}<\infty$.

For simplicity in calculation, we set

$$
\begin{align*}
& \widetilde{A_{0}}(z)=\left(1-|z|^{2}\right)\left|u^{\prime \prime}(z)\right|, \quad \widetilde{A_{1}}(z)=\left(1-|z|^{2}\right)\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)+v^{\prime \prime}(z)\right| \\
& \widetilde{A_{2}}(z)=\left(1-|z|^{2}\right)\left|u(z) \varphi^{\prime 2}(z)+2 v^{\prime}(z) \varphi^{\prime}(z)+v(z) \varphi^{\prime \prime}(z)\right|, \quad \widetilde{A_{3}}(z)=\left(1-|z|^{2}\right)\left|v(z) \varphi^{\prime 2}(z)\right| . \tag{1}
\end{align*}
$$

Theorem 2.2. Let $u \in \mathcal{Z}, v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D}. Then the following statements are equivalent.
(a) The operator $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ is bounded.
(b) The operator $T_{u, v, \varphi}: \mathcal{Z}_{0} \rightarrow \mathcal{Z}$ is bounded.
(c) $\max \left\{\sup _{z \in \mathbb{D}} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}, \sup _{j \geq 1} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\| \mathcal{Z}\right\}<\infty$.
(d) $\max \left\{\sup _{z \in \mathbb{D}} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}, \quad \sup _{a \in \mathbb{D}}\left\|T_{u, v, \varphi} f_{1, a}\right\|_{\mathcal{Z}}\right\}<\infty$ and

$$
\max \left\{\sup _{a \in \mathbb{D}}\left\|T_{u, v, \varphi} f_{2, a}\right\|_{\mathcal{Z}}<\infty, \quad \sup _{z \in \mathbb{D}} \widetilde{A_{2}}(z), \quad \sup _{z \in \mathbb{D}} \widetilde{A_{3}}(z)\right\}<\infty
$$

where $f_{i, a}(z)=\frac{\left(1-|a|^{2}\right)^{i+2}}{(1-\bar{a} z)^{i+1}}$.
(e)

$$
\max \left\{\sup _{z \in \mathbb{D}} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}, \sup _{z \in \mathbb{D}} \frac{\widetilde{A_{2}}(z)}{\left(1-|\varphi(z)|^{2}\right)}, \sup _{z \in \mathbb{D}} \frac{\widetilde{A_{3}}(z)}{\left(1-|\varphi(z)|^{2}\right)^{2}}\right\}<\infty .
$$

Proof. $\quad(a) \Rightarrow(b)$ It is obvious.
$(b) \Rightarrow(c)$ For any $a \in \mathbb{D}$, let Ψ_{a} be the function defined in Lemma 2.1.

$$
\begin{aligned}
\widetilde{A_{1}}(a) \log \frac{2}{1-|\varphi(a)|^{2}}=\widetilde{A_{1}}(a)\left|\Psi_{a}^{\prime}(\varphi(a))\right|=\left(1-|a|^{2}\right)\left|\left(T_{u, v, \varphi} \Psi_{a}\right)^{\prime \prime}(a)\right| & \leq\left\|T_{u, v, \varphi} \Psi_{a}\right\|_{\mathcal{Z}} \\
& \leq\left\|T_{u, v, \varphi}\right\|_{\mathcal{Z}} \sup _{a \in \mathbb{D}}\left\|\Psi_{a}\right\|_{\mathcal{Z}}<\infty
\end{aligned}
$$

From [8], we know that the sequence $\left\{z^{j}\right\}_{0}^{\infty}$ is bounded in \mathcal{B}_{0}, hence $\left\{j^{-1} z^{j}\right\}_{1}^{\infty}$ is bounded in \mathcal{Z}_{0}, therefore

$$
\sup _{j \geq 1} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\|_{\mathcal{Z}} \leq\left\|T_{u, v, \varphi}\right\|_{\mathcal{Z}} \sup _{j \geq 1}\left\|z^{j}\right\|_{\mathcal{B}}<\infty
$$

$(c) \Rightarrow(d)$ Let $p_{j}(z)=z^{j}$. For any $a \in \mathbb{D}$ and $i=1,2$, we have

$$
\begin{aligned}
\left\|T_{u, v, \varphi} f_{i, a}\right\|_{\mathcal{Z}} & \leq\left(1-|a|^{2}\right)^{i+1}\left(\|u\|_{\mathcal{Z}}+\sum_{j=1}^{\infty}\binom{i+j-1}{j} j|a|^{j} j^{-1}\left\|T_{u, v, \varphi} p_{j}\right\|_{\mathcal{W}_{\mu}^{n}}\right) \\
& \leq\left(1+i 2^{i+1}\right) \max \left\{\|u\|_{\mathcal{Z}}, \sup _{j \geq 1} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\| \mathcal{Z}\right\}
\end{aligned}
$$

Since a is arbitrary, $\sup _{a \in \mathbb{D}}\left\|T_{u, v, \varphi} f_{i, a}\right\|_{\mathcal{Z}}<\infty$. Applying the operator $T_{u, v, \varphi}$ for $p_{2}(z)=z^{2}$, so

$$
\widetilde{A_{2}}(z) \leq\left\|T_{u, v, \varphi}\right\|_{\mathcal{Z}}+\widetilde{A_{0}}(z)|\varphi(z)|^{2}+2 \widetilde{A_{1}}(z)|\varphi(z)| \leq\left\|T_{u, v, \varphi}\right\|_{\mathcal{Z}}+\sup _{z \in \mathbb{D}} \widetilde{A_{0}}(z)+2 \sup _{z \in \mathbb{D}} \widetilde{A_{1}}(z)<\infty
$$

Therefore, $\sup _{z \in \mathbb{D}} \widetilde{A_{2}}(z)<\infty$. Similarly by applying the operator $T_{u, v, \varphi}$ for $p_{3}(z)=z^{3}$, we get

$$
\widetilde{A_{3}}(z) \leq\left\|T_{u, v, \varphi}\right\|_{\mathcal{Z}}+\sup _{z \in \mathbb{D}} \widetilde{A_{0}}(z)+3 \sup _{z \in \mathbb{D}} \widetilde{A_{1}}(z)+6 \sup _{z \in \mathbb{D}} \widetilde{A_{2}}(z)<\infty .
$$

Hence $\sup _{z \in \mathbb{D}} \widetilde{A_{3}}(z)<\infty$.
$(d) \Rightarrow(e)$ Suppose that (d) holds. we set

$$
\begin{equation*}
k_{1, a}(z)=\frac{5}{6} f_{1, a}(z)-\frac{1}{3} f_{2, a}(z) \tag{2}
\end{equation*}
$$

Let $|\varphi(a)|>\frac{1}{2}$, so

$$
\begin{aligned}
\frac{\widetilde{A_{2}}(a)|\varphi(a)|^{2}}{\left(1-|\varphi(a)|^{2}\right)} & \leq \sup _{a \in \mathbb{D}}\left\|T_{u, v, \varphi} k_{1, \varphi}(a)\right\| \mathcal{Z}+\sup _{a \in \mathbb{D}} \widetilde{A_{0}}(a)\left(1-|\varphi(a)|^{2}\right)+\sup _{a \in \mathbb{D}} \widetilde{A_{1}}(a)|\varphi(a)| \\
& \preceq \sup _{a \in \mathbb{D}}\left\|f_{1, a}\right\| \mathcal{Z}+\sup _{a \in \mathbb{D}}\left\|f_{2, a}\right\| \mathcal{Z}+\sup _{a \in \mathbb{D}} \widetilde{A_{0}}(a)+\sup _{a \in \mathbb{D}} \widetilde{A_{1}}(a)<\infty .
\end{aligned}
$$

From previous inequality, $\sup _{|\varphi(a)|>\frac{1}{2}} \frac{\widetilde{A_{2}}(a)}{\left(1-\mid \varphi\left(\left.a\right|^{2}\right)\right.}<\infty$. Also by using (d), we obtain

$$
\sup _{|\varphi(a)| \leq \frac{1}{2}} \frac{\widetilde{A_{2}}(a)}{\left(1-|\varphi(a)|^{2}\right)} \leq \frac{4}{3} \sup _{|\varphi(a)| \leq \frac{1}{2}} \widetilde{A_{2}}(a)<\infty .
$$

Now we set

$$
\begin{equation*}
k_{2, a}(z)=\frac{-1}{6} f_{1, a}(z)+\frac{1}{12} f_{2, a}(z) . \tag{3}
\end{equation*}
$$

Let $|\varphi(a)|>\frac{1}{2}$, hence

$$
\begin{aligned}
\frac{\widetilde{A_{3}}(a)|\varphi(a)|^{3}}{\left(1-|\varphi(a)|^{2}\right)^{2}} & \leq \sup _{a \in \mathbb{\mathbb { D }}}\left\|T_{u, v, \varphi} k_{2, \varphi(a)}\right\| \mathcal{Z}+\sup _{a \in \mathbb{D}} \widetilde{A_{0}}(a)\left(1-|\varphi(a)|^{2}\right)+\sup _{a \in \mathbb{D}} \widetilde{A_{1}}(a)|\varphi(a)| \\
& \preceq \sup _{a \in \mathbb{D}}\left\|f_{1, a}\right\|_{\mathcal{Z}}+\sup _{a \in \mathbb{D}}\left\|f_{2, a}\right\|_{\mathcal{Z}}+\sup _{a \in \mathbb{D}} \widetilde{A_{0}}(a)+\sup _{a \in \mathbb{D}} \widetilde{A_{1}}(a)<\infty .
\end{aligned}
$$

So, $\sup _{|\varphi(a)|>\frac{1}{2} \frac{\widetilde{A_{3}}(a)}{\left(1-|\varphi(a)|^{2}\right)^{2}}}<\infty$. Also from (d), we have

$$
\sup _{|\varphi(a)| \leq \frac{1}{2}} \frac{\widetilde{A_{3}}(a)}{\left(1-|\varphi(a)|^{2}\right)^{2}} \leq \frac{16}{9} \sup _{|\varphi(a)| \leq \frac{1}{2}} \widetilde{A_{3}}(a)<\infty .
$$

$(e) \Rightarrow(a)$ Let f be arbitrary function in \mathcal{Z}. Using Lemmas 1.1 and 1.2, we have

$$
\begin{aligned}
\left(1-|z|^{2}\left|\left(T_{u, v, \varphi} f\right)^{\prime \prime}(z)\right|\right. & \preceq \mid f\left\|_{\mathcal{Z}}\right\| u\left\|_{\mathcal{Z}}+\right\| f \|_{\mathcal{Z}} \sup _{z \in \mathbb{D}} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}} \\
& +\|f\|_{\mathcal{Z}} \sup _{z \in \mathbb{D}} \frac{\widetilde{A_{2}}(z)}{\left(1-|\varphi(z)|^{2}\right)}+\|f\|_{\mathcal{Z}} \sup _{z \in \mathbb{D}} \frac{\widetilde{A_{3}}(z)}{\left(1-|\varphi(z)|^{2}\right)^{2}} .
\end{aligned}
$$

Also

$$
\left|\left(T_{u, v, \varphi} f\right)(0)\right| \leq\|f\|_{\mathcal{Z}}\left(|u(0)|+|v(0)| \log \frac{2}{1-|\varphi(0)|^{2}}\right)
$$

and

$$
\left|\left(T_{u, v, \varphi} f\right)^{\prime}(0)\right| \leq\|f\|_{\mathcal{Z}}\left(\left|u^{\prime}(0)\right|+\left|u(0) \varphi^{\prime}(0)+v^{\prime}(0)\right| \log \frac{2}{1-|\varphi(0)|^{2}}+\frac{|v(0)|}{1-|\varphi(0)|^{2}}\right)
$$

Thus, $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ is bounded. The proof is completed.

3. Essential norm

In this section, some estimates for the essential norm of operator $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ are obtained. For the study of the essential norm, we need the following lemma, which can be proved in a standard way, see, for example [12, Lemma 2.10].

Lemma 3.1. Let φ be an analytic self-map of \mathbb{D} and $S: \mathcal{Z}\left(\mathcal{Z}_{0}\right) \rightarrow \mathcal{Z}$ be bounded. Then S is compact if and only if whenever $\left\{f_{k}\right\}$ is bounded in $\mathcal{Z}\left(\mathcal{Z}_{0}\right)$ and $f_{k} \rightarrow 0$ uniformly on compact subsets of \mathbb{D}, then

$$
\lim _{k \rightarrow \infty}\left\|S f_{k}\right\|_{\mathcal{Z}}=0
$$

Lemma 3.2. Let $u, v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D}, such taht $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ be bounded. Then

$$
\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z}_{0} \rightarrow \mathcal{Z}} \geq \limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}
$$

where $\widetilde{A_{1}}(z)$ is defined in (1).
Proof. Let $\left\{z_{i}\right\}$ be a sequence in \mathbb{D} such that $\lim \left|\varphi\left(z_{i}\right)\right|=1$. We assume that for each $i, \varphi\left(z_{i}\right) \neq 0$. First we show that there exists a bounded sequence $\left\{\Psi_{i}\right\}$ in \mathcal{Z}_{0} such that, $\left\{\Psi_{i}\right\}$ converge to 0 uniformly on compact subsets of \mathbb{D} and

$$
\Psi_{i}\left(\varphi\left(z_{i}\right)\right)=\Psi_{i}^{\prime \prime}\left(\varphi\left(z_{i}\right)\right)=\Psi_{i}^{\prime \prime \prime}\left(\varphi\left(z_{i}\right)\right)=0, \Psi_{i}^{\prime}\left(\varphi\left(z_{i}\right)\right)=\log \frac{2}{1-\left|\varphi\left(z_{i}\right)\right|^{2}}
$$

For each i and $k \in\{1,2,3\}$, we set

$$
h_{i, k}(z)=(k+1)(k+2)(k+3)+\int_{\varphi\left(z_{i}\right)}^{z}\left((3+k) \frac{\left(\log \frac{2}{1-\overline{\varphi\left(z_{i}\right) \xi}}\right)^{2+k}}{\left(\log \frac{2}{1-\left|\varphi\left(z_{i}\right)\right|^{2}}\right)^{1+k}}-(2+k) \frac{\left(\log \frac{2}{1-\frac{\varphi\left(z_{i}\right) \xi}{}}\right)^{3+k}}{\left(\log \frac{2}{1-\mid \varphi\left(\left.z_{i}\right|^{2}\right.}\right)^{2+k}}\right) d \xi
$$

It is clear that $h_{i, k} \in \mathcal{Z}_{0}$. Now the following sequence give us all mentioned properties

$$
\Psi_{i}(z)=\frac{1}{12} h_{i, 1}(z)-\frac{3}{20} h_{i, 2}(z)+\frac{1}{15} h_{i, 3}(z)
$$

Let $K: \mathcal{Z}_{0} \rightarrow \mathcal{Z}$ be arbitrary compact operator. By using Lemma 3.1, we have

$$
\begin{aligned}
\left\|\left(T_{u, v, \varphi}-K\right) \Psi_{i}\right\|_{\mathcal{Z} \rightarrow \mathcal{Z}} & \geq\left\|\left(T_{u, v, \varphi}-K\right) \Psi_{i}\right\|_{\mathcal{Z}_{0} \rightarrow \mathcal{Z}} \geq \limsup _{i \rightarrow \infty}\left\|T_{u, v, \varphi} \Psi_{i}\right\|_{\mathcal{Z}}-\limsup _{i \rightarrow \infty}\left\|K \Psi_{i}\right\|_{\mathcal{Z}} \\
& \geq \limsup _{i \rightarrow \infty} \widetilde{A_{1}}\left(z_{i}\right) \log \frac{2}{1-\left|\varphi\left(z_{i}\right)\right|^{2}}=\limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}
\end{aligned}
$$

Based on the defination of essential norm, we have

$$
\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z}_{0} \rightarrow \mathcal{Z}}=\inf _{K}\left\|T_{u, v, \varphi}-K\right\| \geq \limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}
$$

The proof is completed.

Theorem 3.3. Let $u, v \in H(\mathbb{D}), \varphi$ be an analytic self-map of \mathbb{D} and $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ be bounded. Then

$$
\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z} \rightarrow \mathcal{Z}} \approx \max \left\{\rho_{i}\right\}_{i=0}^{2} \approx \max \left\{\sigma_{i}\right\}_{i=0}^{2}
$$

where

$$
\begin{array}{lll}
f_{i, a}(z)=\frac{\left(1-|a|^{2}\right)^{i+2}}{(1-\bar{a} z)^{i+1}}, & \sigma_{0}=\rho_{0}=\limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}, & \sigma_{1}=\limsup _{|a| \rightarrow 1}\left\|T_{u, v, \varphi} f_{1, a}\right\|_{\mathcal{Z}}, \\
\sigma_{2}=\limsup _{|a| \rightarrow 1}\left\|T_{u, v, \varphi} f_{2, a}\right\|_{\mathcal{Z}}, & \rho_{1}=\limsup _{|\varphi(z)| \rightarrow 1} \frac{\widetilde{A_{2}}(z)}{\left(1-|\varphi(z)|^{2}\right)}, & \rho_{2}=\limsup _{|\varphi(z)| \rightarrow 1} \frac{\widetilde{A_{3}}(z)}{\left(1-|\varphi(z)|^{2}\right)^{2}}
\end{array}
$$

and $\widetilde{A_{0}}(z), \widetilde{A_{1}}(z), \widetilde{A_{2}}(z), \widetilde{A_{3}}(z)$ are defined in (1).
Proof. Let $\left\{z_{j}\right\}_{j \in \mathbb{N}}$ be a sequence in \mathbb{D} such that $\lim \left|\varphi\left(z_{j}\right)\right|=1$ and $k_{i, a}(i=1,2)$ be functions are defined in (2) and (3). It is clear that for all $a \in \mathbb{D},\left\|k_{i, a}\right\|_{\mathcal{Z}} \preceq 1(i=1,2)$ and if $a \neq 0$ then $k_{i, a} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $|a| \rightarrow 1$. So, by using Lemma 3.1 for any compact operator K from \mathcal{Z} into \mathcal{Z}, we get

$$
\begin{aligned}
\left\|T_{u, v, \varphi}-K\right\|_{\mathcal{Z} \rightarrow \mathcal{Z}} & \succeq \limsup _{j \rightarrow \infty}\left\|\left(T_{u, v, \varphi}-K\right) k_{i, \varphi\left(z_{j}\right)}\right\| \mathcal{Z} \geq \limsup _{j \rightarrow \infty}\left\|T_{u, v, \varphi} k_{i, \varphi}\left(z_{j}\right)\right\| \mathcal{Z}-\limsup _{j \rightarrow \infty}\left\|K k_{i, \varphi}\left(z_{j}\right)\right\| \mathcal{Z} \\
& \geq \limsup _{j \rightarrow \infty} \frac{\widetilde{A_{i+1}}\left(z_{j}\right)\left|\varphi\left(z_{j}\right)\right|^{2}}{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)^{i}}-\limsup _{j \rightarrow \infty} \widetilde{A_{0}}\left(z_{j}\right)\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)-\limsup _{j \rightarrow \infty} \widetilde{A_{1}}\left(z_{j}\right)\left|\varphi\left(z_{j}\right)\right| .
\end{aligned}
$$

From Theorem $2.2(c)$, we have $\lim \sup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z)=0$, so from previous inequality and definaition of essential norm, we have

$$
\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z} \rightarrow \mathcal{Z}}=\inf _{K}\left\|T_{u, v, \varphi}-K\right\|_{\mathcal{Z} \rightarrow \mathcal{Z}} \succeq \max \left\{\rho_{1}, \rho_{2}\right\} .
$$

Using Lemma 3.2, we get

$$
\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z} \rightarrow \mathcal{Z}} \succeq \max \left\{\rho_{0}, \rho_{1}, \rho_{2}\right\} .
$$

Also $\left\|f_{i, a}\right\|_{\mathcal{Z}} \preceq 1(i=1,2)$ and $f_{i, a} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $|a| \rightarrow 1$. So, for any compact operator $K: \mathcal{Z} \rightarrow \mathcal{Z}$, by Lemma 3.1, we get $\lim \sup _{|a| \rightarrow 1}\left\|K f_{i, a}\right\|_{\mathcal{Z}}=0$. Hence

$$
\left\|T_{u, v, \varphi}-K\right\|_{\mathcal{Z} \rightarrow \mathcal{Z}} \succeq \limsup _{|a| \rightarrow 1}\left\|\left(T_{u, v, \varphi}-K\right) f_{i, a}\right\|_{\mathcal{Z}} \geq \limsup _{|a| \rightarrow 1}\left\|T_{u, v, \varphi} f_{i, a}\right\|_{\mathcal{Z}}-\limsup _{|a| \rightarrow 1}\left\|K f_{i, a}\right\|_{\mathcal{Z}}=\sigma_{i} .
$$

By the last inequality and Lemma 3.2, we obtain

$$
\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z} \rightarrow \mathcal{Z}}=\inf _{K}\left\|T_{u, v, \varphi}-K\right\|_{\mathcal{Z} \rightarrow \mathcal{Z}} \succeq \max \left\{\sigma_{0}, \sigma_{1}, \sigma_{2}\right\} .
$$

Now, we prove that

$$
\min \left\{\max \left\{\sigma_{i}\right\}_{i=0}^{2}, \max \left\{\rho_{i}\right\}_{i=0}^{2}\right\} \succeq\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z} \rightarrow \mathcal{Z}}
$$

For $r \in[0,1)$, we define $K_{r} f(z)=f_{r}(z)=f(r z)$. It is clear that $K_{r}: \mathcal{Z} \rightarrow \mathcal{Z}$ is a compact operator with $\left\|K_{r}\right\| \leq 1$. Also we khow that $f_{r} \rightarrow f$ uniformly on compact subsets of \mathbb{D} as $r \rightarrow 1$. Let $\left\{r_{j}\right\} \subset(0,1)$ be a sequence such that $r_{j} \rightarrow 1$ as $j \rightarrow \infty$. Then for any positive integer j, the operator $T_{u, v, \varphi} K_{r_{j}}: \mathcal{Z} \rightarrow \mathcal{Z}$ is compact. So

$$
\limsup _{j \rightarrow \infty}\left\|T_{u, v, \varphi}-T_{u, v, \varphi} K_{r_{j}}\right\| \geq\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z} \rightarrow \mathcal{Z}}
$$

Therefore, based on the defination of essential norm it is enough to prove that

$$
\min \left\{\max \left\{\sigma_{i}\right\}_{i=0}^{2}, \max \left\{\rho_{i}\right\}_{i=0}^{2}\right\} \succeq \limsup _{j \rightarrow \infty}\left\|T_{u, v, \varphi}-T_{u, v, \varphi} K_{r_{j}}\right\|_{\mathcal{Z} \rightarrow \mathcal{Z}}
$$

Let f be arbitrary function in \mathcal{Z} such that $\|f\|_{\mathcal{Z}} \leq 1$,

$$
\begin{align*}
& \left\|\left(T_{u, v, \varphi}-T_{u, v, \varphi} K_{r_{j}}\right) f\right\|_{\mathcal{Z}} \leq \underbrace{\left(|u(0)|+\left|u^{\prime}(0)\right|\right)\left|\left(f-f_{r_{j}}\right)(\varphi(0))\right|}_{R_{1}}+\underbrace{\left|v(0) \varphi^{\prime}(0)\right|\left|\left(f-f_{r_{j}}\right)^{\prime \prime}(\varphi(0))\right|}_{R_{2}} \\
& +\underbrace{\left(|v(0)|+\left|u(0) \varphi^{\prime}(0)\right|+\left|v^{\prime}(0)\right|\right)\left(f-f_{r_{j}}\right)^{\prime}(\varphi(0)) \mid}_{R_{3}}+\underbrace{\sup _{z \in \mathbb{D}} \widetilde{A_{0}}(z)\left|\left(f-f_{r_{j}}\right)(\varphi(z))\right|}_{L_{0}}+\underbrace{\sup _{|\varphi(z)| \leq r_{N}} \widetilde{A_{1}}(z)\left|\left(f-f_{r_{j}}\right)^{\prime}(\varphi(z))\right|}_{L_{11}} \\
& +\underbrace{\sup ^{|\varphi(z)|>r_{N}} \widetilde{A_{1}}(z)\left|\left(f-f_{r_{j}}\right)^{\prime}(\varphi(z))\right|}_{L_{12}}+\underbrace{\sup _{|\varphi(z)| \leq r_{N}} \widetilde{A_{2}}(z)\left|\left(f-f_{r_{j}}\right)^{\prime \prime}(\varphi(z))\right|}_{L_{21}}+\underbrace{\sup _{|(z)|>r_{N}} \widetilde{A_{2}}(z)\left|\left(f-f_{r_{j}}\right)^{\prime \prime}(\varphi(z))\right|}_{L_{22}} \\
& +\underbrace{\sup _{|\varphi(z)| \leq r_{N}} \widetilde{A_{3}}(z)\left|\left(f-f_{r_{j}}\right)^{\prime \prime \prime}(\varphi(z))\right|}_{L_{31}}+\underbrace{\sup _{|\varphi(z)|>r_{N}} \widetilde{A_{3}}(z)\left|\left(f-f_{r_{j}}\right)^{\prime \prime \prime}(\varphi(z))\right|}_{L_{32}} \tag{4}
\end{align*}
$$

where $N \in \mathbb{N}$ and $r_{j} \geq \frac{1}{2}$ for all $j \geq N$. Since for any $k \in \mathbb{N}_{0}$, $\left(f-f_{r_{j}}\right)^{(k)} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $j \rightarrow \infty$, from Lemmas 1.2, 1.3 and Theorem $2.2(d)$, we get

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} R_{t}=\limsup _{j \rightarrow \infty} L_{0}=\limsup _{j \rightarrow \infty} L_{t 1}=0 \quad(t=1,2,3) . \tag{5}
\end{equation*}
$$

Also

$$
\begin{equation*}
L_{12} \leq \underbrace{\sup _{|\varphi(z)|>r_{N}} \widetilde{A_{1}}(z)\left|f^{\prime}(\varphi(z))\right|}_{L_{12}^{1}}+\underbrace{\sup _{|\varphi(z)|>r_{N}} \widetilde{A_{1}}(z)\left|r_{j} f^{\prime}\left(r_{j} \varphi(z)\right)\right|}_{L_{12}^{2}} \tag{6}
\end{equation*}
$$

No we obtain estimate for L_{12}^{1}. Using Lemma 1.2,

$$
L_{12}^{1}=\sup _{|\varphi(z)|>r_{N}} \widetilde{A_{1}}(z)\left|f^{\prime}(\varphi(z))\right| \preceq \sup _{|\varphi(z)|>r_{N}} \widetilde{A_{1}}(z)\|f\|_{\mathcal{Z}} \log \frac{2}{1-|\varphi(z)|^{2}}
$$

Letting $N \rightarrow \infty$, we get

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} L_{12}^{1} \preceq \sigma_{0}=\rho_{0} \tag{7}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} L_{12}^{2} \preceq \sigma_{0}=\rho_{0} . \tag{8}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
& L_{22} \leq \underbrace{\sup _{|\varphi(z)|>r_{N}} \widetilde{A_{2}}(z)\left|f^{\prime \prime}(\varphi(z))\right|}_{L_{22}^{1}}+\underbrace{\sup _{|\varphi(z)|>r_{N}} \widetilde{A_{2}}(z)\left|r_{j} f^{\prime \prime}\left(r_{j} \varphi(z)\right)\right|}_{L_{22}^{2}} \\
& L_{32} \leq \underbrace{\sup ^{|\varphi(z)|>r_{N}} \widetilde{A_{3}}(z)\left|f^{\prime \prime \prime}(\varphi(z))\right|}_{L_{32}^{1}}+\underbrace{\sup _{|\varphi(z)|>r_{N}} \widetilde{A_{3}}(z)\left|r_{j} f^{\prime \prime \prime}\left(r_{j} \varphi(z)\right)\right|}_{L_{32}^{2}} \tag{9}
\end{align*}
$$

Now we estimate $L_{2 s}^{1}(s=2,3)$. From Lemmas 1.1, 1.2, and (2) and (3),

$$
\begin{aligned}
L_{s 2}^{1} & =\sup _{|\varphi(z)|>r_{N}} \frac{\left(1-|\varphi(z)|^{2}\right)^{s-1}\left|f^{(s)}(\varphi(z))\right|}{|\varphi(z)|^{s}} \frac{|\varphi(z)|^{s} \widetilde{A_{s}}(z)}{\left(1-|\varphi(z)|^{2}\right)^{s-1}} \preceq\|f\|_{\mathcal{Z}} \sup _{|\varphi(z)|>r_{N}}\left\|T_{u, v, \varphi} k_{s, \varphi(z)}\right\|_{\mathcal{Z}} \\
& \preceq \sup _{|a|>r_{N}}\left\|T_{u, v, \varphi} f_{1, a}\right\|_{\mathcal{Z}}+\sup _{|a|>r_{N}}\left\|T_{u, v, \varphi} f_{2, a}\right\|_{\mathcal{Z}}
\end{aligned}
$$

Letting $N \rightarrow \infty$, we get

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} L_{s 2}^{1} \preceq \rho_{s-1} \quad \text { and } \quad \limsup _{j \rightarrow \infty} L_{s 2}^{1} \preceq \max \left\{\sigma_{1}, \sigma_{2}\right\} . \tag{10}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} L_{s 2}^{2} \preceq \rho_{s-1} \quad \text { and } \quad \limsup _{j \rightarrow \infty} L_{s 2}^{2} \preceq \max \left\{\sigma_{1}, \sigma_{2}\right\} \tag{11}
\end{equation*}
$$

By using (4), (5), (6), (7), (8), (9), (10) and (11), we obtain

$$
\max \left\{\sigma_{0}, \sigma_{1}, \sigma_{2}\right\} \succeq \limsup _{j \rightarrow \infty} \sup _{\|f\|_{\mathcal{Z} \leq 1}}\left\|\left(T_{u, v, \varphi}-T_{u, v, \varphi} K_{r_{j}}\right) f\right\|_{\mathcal{Z}}=\limsup _{j \rightarrow \infty}\left\|T_{u, v, \varphi}-T_{u, v, \varphi} K_{r_{j}}\right\|_{\mathcal{Z} \rightarrow \mathcal{Z}}
$$

and

$$
\max \left\{\rho_{0}, \rho_{1}, \rho_{2}\right\} \succeq \limsup _{j \rightarrow \infty}\left\|T_{u, v, \varphi}-T_{u, v, \varphi} K_{r_{j}}\right\|_{\mathcal{Z} \rightarrow \mathcal{Z}}
$$

Hence,

$$
\min \left\{\max \left\{\sigma_{i}\right\}_{i=0}^{2}, \max \left\{\rho_{i}\right\}_{i=0}^{2}\right\} \succeq \limsup _{j \rightarrow \infty}\left\|T_{u, v, \varphi}-T_{u, v, \varphi} K_{r_{j}}\right\|_{\mathcal{Z} \rightarrow \mathcal{Z}}
$$

The proof is completed.

Theorem 3.4. Let $u, v \in H(\mathbb{D}), \varphi$ be an analytic self-map of \mathbb{D} and $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ be bounded. Then

$$
\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z} \rightarrow \mathcal{Z}} \approx\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z}_{0} \rightarrow \mathcal{Z}} \approx \max \left\{\limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}, \limsup _{j \rightarrow \infty} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\|_{\mathcal{Z}}\right\}
$$

where $\widetilde{A_{1}}(z)$ is defined in (1).

Proof. Let $p_{j}(z)=z^{j}$. It is clear that $\left\{j^{-1} p_{j}\right\}_{1}^{\infty} \subset \mathcal{Z}_{0}$ and $j^{-1} p_{j} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $j \rightarrow \infty$. So, for any compact operator $K: \mathcal{Z}_{0} \rightarrow \mathcal{Z}$, we have $\lim _{j \rightarrow \infty} j^{-1}\left\|K p_{j}\right\|_{\mathcal{Z}}=0$. Thus,

$$
\begin{aligned}
\left\|T_{u, v, \varphi}-K\right\|_{\mathcal{Z}_{0} \rightarrow \mathcal{Z}} & \succeq \limsup _{j \rightarrow \infty} j^{-1}\left\|\left(T_{u, v, \varphi}-K\right) p_{j}\right\|_{\mathcal{Z}} \limsup _{j \rightarrow \infty} j^{-1}\left\|T_{u, v, \varphi} p_{j}\right\|_{\mathcal{Z}}-\limsup _{j \rightarrow \infty} j^{-1}\left\|K p_{j}\right\|_{\mathcal{Z}} \\
& =\limsup _{j \rightarrow \infty} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\|_{\mathcal{Z}}
\end{aligned}
$$

So, by using the last inequality and Lemma 3.2, we get

$$
\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z} \rightarrow \mathcal{Z}} \geq\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z}_{0} \rightarrow \mathcal{Z}} \succeq \max \left\{\limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}, \limsup _{j \rightarrow \infty} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\|_{\mathcal{Z}}\right\}
$$

Now we prove the other side. For any fix positive integer $k \geq 1$ and $i=1,2$, since $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ is bounded, from Theorem 2.2, we get

$$
\begin{aligned}
& \left\|T_{u, v, \varphi} f_{i, a}\right\|_{\mathcal{Z}} \leq C_{i}\left(1-|a|^{2}\right)^{i+2} \sum_{j=0}^{\infty}\binom{i+j}{j}|a|^{j}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\|_{\mathcal{Z}} \\
= & \left(1-|a|^{2}\right)^{i+2}\left(\|u\|_{\mathcal{Z}}+\sum_{j=1}^{k-1}\binom{i+j}{j} j|a|^{j} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\| \mathcal{Z}\right)+\left(1-|a|^{2}\right)^{i+2} \sum_{j=k}^{\infty}\binom{i+j}{j} j|a|^{j} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\|_{\mathcal{Z}} \\
\leq & 2 Q(k-1)\binom{i+k-1}{k-1}\left(1-|a|^{k}\right)\left(1-|a|^{2}\right)^{i+1}+i 2^{i+2} \sup _{j \geq k} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\| \mathcal{Z},
\end{aligned}
$$

where $Q:=\max \left\{\sup _{j \geq 1} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\|_{\mathcal{Z}},\|u\|_{\mathcal{Z}}\right\}$. Letting $|a| \rightarrow 1$, we obtain

$$
\sigma_{i}=\limsup _{|a| \rightarrow 1}\left\|T_{u, v, \varphi} f_{i, a}\right\|_{\mathcal{Z}} \preceq \sup _{j \geq k} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\|_{\mathcal{Z}}
$$

Using last inequalitty and Theorem 3.3, we get

$$
\begin{aligned}
\left\|T_{u, v, \varphi}\right\|_{e, \mathcal{Z} \rightarrow \mathcal{Z}} & \preceq \max \left\{\limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}, \sigma_{1}, \sigma_{2}\right\} \\
& \preceq \max \left\{\limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}, \limsup _{j \rightarrow \infty} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\| \mathcal{Z}\right\} .
\end{aligned}
$$

The proof is complete

From Theorems 3.3 and 3.4, we get the following corollary.
Corollary 3.5. Let $u, v \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} such that $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ be bounded. Then the following statements are equivalent.
(a) The operator $T_{u, v, \varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ is compact.
(b) The operator $T_{u, v, \varphi}: \mathcal{Z}_{0} \rightarrow \mathcal{Z}$ is compact.
(c)

$$
\limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}=\limsup _{j \rightarrow \infty} j^{-1}\left\|u \varphi^{j}+j v \varphi^{j-1}\right\|_{\mathcal{Z}}=0
$$

(d)

$$
\limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}=\limsup _{|a| \rightarrow 1}\left\|T_{u, v, \varphi} f_{1, a}\right\|_{\mathcal{Z}}=\limsup _{|a| \rightarrow 1}\left\|T_{u, v, \varphi} f_{2, a}\right\|_{\mathcal{Z}}=0
$$

(e)

$$
\limsup _{|\varphi(z)| \rightarrow 1} \widetilde{A_{1}}(z) \log \frac{2}{1-|\varphi(z)|^{2}}=\limsup _{|\varphi(z)| \rightarrow 1} \frac{\widetilde{A_{2}}(z)}{\left(1-|\varphi(z)|^{2}\right)}=\limsup _{|\varphi(z)| \rightarrow 1} \frac{\widetilde{A_{3}}(z)}{\left(1-|\varphi(z)|^{2}\right)^{2}}=0
$$

Remark 3.6. Putting $v \equiv 0$ in Theorems 2.2,3.3,3.4, and Corollary 3.5, we get some new characterizations for boundedness, essential norm and compactness of operator $u C_{\varphi}: \mathcal{Z} \rightarrow \mathcal{Z}$ (see Theorems 3.1 and 4.3 in [14] and Theorems 2.2. and 3.5 in [2]).

References

[1] C. C. Cowen, B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
[2] K. Esmaeili, M. Lindström, Weighted composition operators between Zygmund type spaces and their essential norms, Integr. Equ. Oper. Theory, 75 (2013) 473-490.
[3] Z. Jiang, Product-type operators from Zygmund spaces to Bloch-Orlicz spaces, Complex Var. Elliptic Equ., 62 (11) (2017) 1645-1664.
[4] Y. Liu, Y. Yu, On a Stević-Sharma operator from Hardy spaces to the logarithmic Bloch spaces, J. Inequal. Appl., 2015 (2015) 2015:22, DOI 10.1186/s13660-015-0547-1.
[5] Y. Liu, Y. Yu, Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball, J. Math. Anal. Appl., 423 (1) (2015) 76-93.
[6] Y. Liu, Y. Yu, On an extension of Stević-Sharma operator from the general space to weighted-type spaces on the unit ball, Complex Anal. Oper. Theory, 11 (2) (2017) 261-288.
[7] Y. Liu, Y. Yu, On Stević-Sharma type operators from the Besov spaces into the weighted-type space H_{μ}^{∞}, Math. Inequal. Appl., 22 (3) (2019) 1037-1053.
[8] B. D. Maccluer, R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., 33 (2003) 1437-1458.
[9] S. Stević, A. Sharma, A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 217 (2011) 81158125.
[10] S. Stević, A. Sharma, A. Bhat, Essential norm of products of multiplications composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 218 (2011) 2386-2397.
[11] S. Stević, A. Sharma, On a product-type operator between Hardy and α-Bloch spaces of the upper half-plane, J. Inequal. Appl., 2018:273, 2018.
[12] M. Tjani, Compact composition operators on some Möbius invariant Banach space, PhD dissertation, Michigan State university, 1996.
[13] H. Wulan, D. Zheng, K. Zhu, Compact composition operators on BMOA and the Bloch space, Proc. Amer. Math. Soc., 137 (2009) 3861-3868.
[14] S. Y, Q. Hu, Weighted Composition Operators on the Zygmund Space, Abstract and Applied Analysis, 2012 (2012), Article ID 462482, 18 pages doi:10.1155/2012/462482.
[15] Y. Yu, Y. Liu, On Stević type operator from H^{∞} space to the logarithmic Bloch spaces, Complex Anal. Oper. Theory, 9 (8) (2015) 1759-1780.
[16] F. Zhang, Y. Liu, On the compactness of the Stević-Sharma operator on the logarithmic Bloch spaces, Math. Inequal. Appl., 19(2) (2016) 625-642.
[17] F. Zhang, Y. Liu, On a Stević-Sharma operator from Hardy spaces to Zygmund-type spaces on the unit disk, Complex Anal. Oper. Theory, 12 (1) (2018) 81-100.
[18] K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math., 23 (3) (1993) 1143-1177.
Please cite this article using:
Ebrahim Abbasi, A class of operator related weighted composition operators between Zygmund space, AUT J. Math. Compu., 2(1) (2021) 17-25
DOI: 10.22060/ajmc.2020.18833.1041

[^0]: *Corresponding author.
 E-mail addresses: ebrahimabbasi81@gmail.com

