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1. Introduction

Let D be the open unit disk in the complex plane C and H (D) be the set of all analytic functions on D. For a
function v € H(D) and analytic self-map ¢ of D(p(D) C D), the weighted composition operator uC, on H (D) is
defined by

(uCy f)(2) = u(2)f(p(2)), feHD), zeDb.
When u = 1, we get the composition operator C,,, which is defined by Cy(f) = f o . For more information about
weighted composition operators see [1, 2, 13, 14].
Let u,v € H(D) and ¢ be an analytic self-map of I. S. Stevi¢ and co-authors in [9] defined the operator T, , .
as follows

Tuwef(2) = u(2)f((2)) +v(2)f (¢(2)), feHD), zeD.

Let D denote the differentiation operator then T, , , = uC, 4+ vC,D. More information about the operator T}, .,
can be found in [4, 7, 9, 10, 15, 16, 17]. Product-type operators on some spaces of analytic functions on the unit
disk and the unit ball or the upper half-plane have become a subject of increasing interest in the last five years
(see, e.g., the following representative papers [3, 5, 6, 11], and the related references therein).

A function f € H(D) is said to be in the Zygmund space Z, if

sup(1 — [2[2)[£"(2)] < oo.
zeD

The space Z becomes a Banach space with the following norm

1fllz = £ (O)] +[£(0)] +§1€13(1 — 211" (2)] < oo.
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The little Zygmund space 2y, is a closed subspace of Z, consists of all function f € Z for which lim, (1 —
|21%)].f"(2)| = 0.

From [18, Proposition 8], we get the next lemma.

Lemma 1.1. For any f € Z and n € N,
£l = > 1F D)+ Slelg(l — 2P ().
i=0 z
Lemma 1.2 ([14]). Let f € Z. Then,

2
F@I<flz and |f'(2)] 2 [ fllzlog TTpE C€ D.

Lemma 1.3 ([14]). Let {f.} be a bounded sequence in Z which converges to zero uniformly on compact subsets
of D. Then
lim sup sup | f(2)] = 0.

n—oo zebh

Recall that the essential norm of a continuous linear operator T : X — Y is the distance from T to the compact
operators, that is
ITlle. x>y =inf{||T — K|| : K : X — Y is compact}.

Here X and Y are Banach spaces. Notice that ||T||c = 0 if and only if 7" is compact.

Recently, Liu and Yu in [7] studied the boundedness and compactness of operator T}, , , from the Besov spaces
into the weighted-type space H;°. In this work, we find some characterizations for boundedness and essential norm
of operator T, 4, : £ — Z. As some applications, we get some new characterizations of the boundedness, essential
norm and compactness of weighted composition operators between Zygmund space.

Throughout this paper, we say that A > B, if there exists a constant C' such that A > C'B. The symbol A ~ B
means that A = B = A.

2. Boundedness

In this section, the boundedness of operator T}, ,,, between Zygmund spaces is characterized. We begin with
the next lemma.

Lemma 2.1. Let ¢ be an analytic self-map of D. Then for any a € D, there exists a function W, in Zy such that
SUP,ep || Wallz < 00 and

Wa(p(a) = Wi(p(a) = Vo (p(a) =0 and ¥, (p(a)) = log 7— =y
Proof. If ¢(a) = 0, then set ¥,(z) = foz log 2 d¢, as desired. For any a € D with ¢(a) # 0 and k € {1,2,3},
set

lo 2 )3+k
(k+3)! /z 2 (og =5 e
hak(2) = + (3+k)log - d¢.
k! ¢(a) ( 1—p(a)¢  (log 1—|<;72(a)2)2+k)

It is obvious that hq ; € Zp. In this case
U, (2) = Bhg1(2) — 6hg2(2) + 2he 3(2)
as desired. By simple calculation, we get

sup |hakllz < oo ke€{1,2,3}.
acD

Hence, sup,cp | Val/z < 0.
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For simplicity in calculation, we set
Ao(z) = (1= P (2)],  Ai(2) = (1 = |2P)]2u/ ()¢ (2) + ul2)¢” (2) + 0" (2)]
Ax(2) = (1= [2P)[u(2)e”” (2) + 20/ ()¢ (2) T ()" ()], As(2) = (1= |2l)e(2)e (2)]- (1)

Theorem 2.2. Let uw € Z, v € H(D) and ¢ be an analytic self-map of D. Then the following statements are
equivalent.

(a) The operator Ty, 4, : Z2 — Z is bounded.

(b) The operator Ty ., : Z0 — Z is bounded.
(c) max{supzeD Aq(2)log ﬁ, supj21j_1|\ug0j —&—jv(pj_le} < o0.
(d) max { sup. cp A1 (=) og 2oy, Wep [ Tuw s frallz | < o0 and

max{sup | T 0,0 f2,all 2 < 00, sup Ay(z), sup Z;,(z)} < 00,
ach z€D z€D

where fi o(z) = (el

(I—az) 1
(¢)

max su Ay Z) 10 2 su -Z;(Z) Ssu ;i;(Z) 0
{sup A log = sw Ty S T o) <

Proof. (a) = (b) It is obvious.
(b) = (¢) For any a € D, let ¥, be the function defined in Lemma 2.1.

(@) g T s = D@L (E@)] = (1= o) (T o) (0)] € [T ol

< | Tuw,pllz sup [al 2 < oo
a€D

From [8], we know that the sequence {27}5° is bounded in By, hence {j127}5° is bounded in Zy, therefore

sup " Jug? + jve? Tz < || Tuwellz sup ||| < oo
i>1 i>1

(¢) = (d) Let p;j(z) = 27. For any a € D and i = 1,2, we have

oo . .
; i+ =1\ . .
oo hallz < =10y (Jullz + 3 (77 )l i T il )
j=1
< (4 2 max{flulz, sups~fug? + o 2).
i>1

Since a is arbitrary, sup,cp || Tu,v,pfia || 2< 00. Applying the operator T, ., for pa(2) = 22, so

A5(2) < [Tl z + Ao(2)e(2)? + 241(2)|0(2)] < ITuwellz + sug?ivo(Z) + 2sugf4v1(Z) < oo.
ze ze

Therefore, sup,cp ;1/2(2) < oco. Similarly by applying the operator T, ., for ps3(z) = 23, we get

As(2) < ||Tuw ez + sup Ag(2) + Bsup Ay (2) + 6sup As(2) < 0.
z€D z€D z€D

Hence sup,cp As(z) < oo.
(d) = (e) Suppose that (d) holds. we set

Fra(z) = 2 f1a(2) = 5f2a(2). @
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Let |¢(a)| > 1, so
Az(a)|p(a)]?
1 - Je(a)]?)

< sup ([T 0,0k1 (0]l 2 + 5up Ao(a) (1 — |p(a)[?) +sup A1 (a)|p(a)l
a€D a€D a€D

= sup [ fr,allz + sup || f2,all 2 + sup Ao(a) + sup A;(a) < oco.
ach ach a€D a€D

From previous inequality, SUD|p(a)[> 3 % < 00. Also by using (d), we obtain

A, —
sup % sup As(a) < o0.
(@<t (1= le(a)?)

lp(a)|<3

4
< =
-3

Now we set
kaa(2) = = f1a(2) + =5 fona(2) 3)
2,a\%) = 6 1,a\?Z 12 2,a\%)-

Let |¢(a)| > %, hence

Ag(a)lp(a)® — .
7< _
- Te@pp = S ITuwehaelz +2p A@ = I()) +sup Au(allele)

< sup || frallz + sup | fo.all 2 + sup Ao(a) + sup 4; (a) < .
acD Q) acD acD
S0, SUP|,(q)[> 1 % < 0. Also from (d), we have

A 16 —
sup % < — sup Az(a) <.
i<y T=19@)? 7 9 @<t

(e) = (a) Let f be arbitrary function in Z. Using Lemmas 1.1 and 1.2, we have

"

— 2
(1= 2P (T ) () 2 W fllzllulz + 1Ifll2 SlelgAl(Z)logl_i

lp(2)]2
+1fllz igg T 1o +Ifllz zeg (1—Jo(2)]2)?
Also
(oo O] < 1111z (1u(0)] + [0(0)] 1og %)
and

(T YO = 1112 (10 O]+ (O () + OV ok T 577 + T2 )

Thus, Ty, : Z — Z is bounded. The proof is completed.

3. Essential norm

In this section, some estimates for the essential norm of operator T3 4, : £ — Z are obtained. For the study
of the essential norm, we need the following lemma, which can be proved in a standard way, see, for example [12,
Lemma 2.10].

Lemma 3.1. Let ¢ be an analytic self-map of D and S : Z(2y) — Z be bounded. Then S is compact if and only
if whenever {fi} is bounded in Z(Zy) and fr, — 0 uniformly on compact subsets of D, then

lim [|S ]z = 0.
k—o0
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Lemma 3.2. Let u,v € H(D) and ¢ be an analytic self-map of D, such taht Ty, : Z — Z be bounded. Then

ITwv.0lle,20—2 > limsup ;lvl(z) log ———.
plesom lo(2)|—1 1 —Jp(2)]?

where :4:(2) is defined in (1).

Proof. Let {z;} be a sequence in D such that lim|¢(z;)] = 1. We assume that for each 4, ¢(z;) # 0. First we
show that there exists a bounded sequence {¥;} in Zy such that, {¥;} converge to 0 uniformly on compact subsets
of D and

"

Ui(p(2:) = U (p(2:1) = ¥, (p(2:)) = 0, ¥i(p(z)) = log

1—|p(2)*
For each 7 and k € {1, 2,3}, we set
2 2+k 2 3+k
: (log T log 1)
hin(z) = b+ DE+2E+3)+ [ (B+R) e~ (24 k) e )de.
(z:) (log =) log ;)

It is clear that h; ; € Zy. Now the following sequence give us all mentioned properties

\IJZ(Z) = ih“(z) — %

1
12 hi72(2) + —hi73(z).

15

Let K : Zy — Z be arbitrary compact operator. By using Lemma 3.1, we have

[(Tuwo = K)Villz2 2 [[(Tuwe — K) Wil 22 > 1ir_§sup [T, il z — 111_15111) KWl =

— — 2
> limsup A;(z;) log —————— = limsup A;(z) log ———.
i—00 L=lp)P  jpee)—1 1—o(2)?

Based on the defination of essential norm, we have

1T olle.zosz = inf [Ty — K| > limsup A7 (z)log ————.
pllezom K ’ lo(2)|—1 1 — ()2

The proof is completed.

Theorem 3.3. Let u,v € H(D), ¢ be an analytic self-map of D and T, ., : Z — Z be bounded. Then

T plle.z—2 ~ max{pi}i_g ~ max{o:}i,

where
frale) = L1 linsup 3 (2)| ltn 50D [ T .o
i,al\%) = T =i g9 = po = Ilmsup A1(2)10g ——, g1 = 1msup u,v, 1,allZ;
(1 —az)itt lo(2)| =1 L —[p(2)[? la|—1 v
. . As(2) : Ay(2)
o9 =limsup || Ty vofoallz, p1=limsup ————, po = limsup ——————~——
la|—1 v lo(z)]—1 (1 = lp(2)[?) lo(z)| =1 (1 = |p(2)[?)?

and AV()(Z),E(Z),;XVQ(Z),AV?,(Z) are defined in (1).

Proof. Let {z;};en be a sequence in D such that lim |p(z;)] = 1 and k; (¢ = 1,2) be functions are defined in
(2) and (3). It is clear that for all a € D, ||k;4]lz < 1(4 = 1,2) and if a # 0 then k; , — 0 uniformly on compact
subsets of D as |a] — 1. So, by using Lemma 3.1 for any compact operator K from Z into Z, we get

|Tu0,0 — Kllz—2z = limsup [[(Tu,0,e — K)ki p(z;)llz = Hmsup | Ty v,k o) llz — limsup | Kk; o2 2
j*}OO ]*}OO

J—00

A, |2 — —
> lim sup M — limsup Ag(z;)(1 — [p(2;)[?) — limsup Ay (2;)](z;)].
jooo (L=le(z)?)" joeo j—roo
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From Theorem 2.2(c), we have limsup, (.1 ;lvl(z) = 0, so from previous inequality and definaition of essential
norm, we have

HTu,v,ga| e, Z—Z — I%f ||Tu,v,<p - K”Z—)Z t maX{p1,p2}-

Using Lemma 3.2, we get

||Tu>v,<p ||e,ZHZ = max{po, p1, P2}

Also [|fiallz = 1(: = 1,2) and f; , — 0 uniformly on compact subsets of D as |a| — 1. So, for any compact operator
K :Z — Z, by Lemma 3.1, we get limsup,_,1 [|K fial|z = 0. Hence

1Tw0,o — Kllz—z = limsup [|[(Ty,v,p — K) fiallz > limsup | Ty, fiallz — limsup [| K fi o| 2z = 0.

al—1 la]—1 la|—1
By the last inequality and Lemma 3.2, we obtain
1 Tuwplle, 22 = Wf [T — Kl z— 2 = max{oo, 01, 02}
Now, we prove that
min{max{o,}2 g, max{pi} 2o} = [Tup ez

For r € [0,1), we define K, f(2) = fr(z) = f(rz). It is clear that K, : Z — Z is a compact operator with || K| < 1.
Also we khow that f, — f uniformly on compact subsets of D as r — 1. Let {r;} C (0,1) be a sequence such that
r; — 1 as j — oo. Then for any positive integer j, the operator Ty, , K, : Z — Z is compact. So

hm sup ”Tu,'u,<p - Tu,v,goK'r'j ” > ||Tu,v,tp||e,Z—>Z~
j—oo

Therefore, based on the defination of essential norm it is enough to prove that

min{max{ai}?zo, max{p; 12:0} = limsup |Tw0,0 = TuwoKr, ||z 2.
j—o0

Let f be arbitrary function in Z such that ||f]|z < 1,

(T = Tuwo K ) fllz < ([u(0)] + [ (O))I(f = fr,)(0(0)] + [0(0)¢" ()II(f = fr,)" ((0))]

Ry Ro2
+ ([v(0)] + [u(0)¢' (0)] + |U’(0)|)(f—frj)’(w(o))lJrSleleTo(z)l(f—frj)(w(Z))H‘ Sup AL(2)(f = fr,) (2(2))]
z P(2Z)|ISTN
e Lo L1
+ osup AL = ) (@) + sup Aa(2)[(f — fr) (0())|+  sup  Aa(2)|(f — fr,)" ((2))]
lo(2)[>rN lo(2)|<rN lo(2)[>rN
Li2 Loy Lao
+ osup As()|(f = )" ()| +  sup As(2)|(f = £r,)" (9(2))] (4)
lo(z)I<rn lp(2)|>rn
L3 Lo
where N € N and 1y > % for all j > N. Since for any &k S Np,

(f — frj)(k) — 0 uniformly on compact subsets of D as j — oo, from Lemmas 1.2, 1.3 and Theorem 2.2 (d),
we get

limsup R; = limsup Ly = limsup Ly =0 (t=1,2,3). (5)
Jj—ro0 j—o0 j—o0
Also
Lip< suwp A () + sup Ai(z)lrf (rje(2))]. (6)
le(2)|>rn lp(z)|>rN
Lis L%,
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No we obtain estimate for Li,. Using Lemma 1.2,

h= s RO sw D=l o

lp(z)[>rN lo(2)|>rn

Letting N — oo, we get

limsup Li, < 00 = po.
J—o0

Similarly, we have

lim sup L2, < 00 = po.
j—oo

On the other hand

Ly < sup  As(2)|f (p(2)|+ sup  Aa(2)rif (rje(2))l,

lp(2)|>rn lp(2)|>rN
Lé? L%z
Lz < sup  Asz(2)|f (p(2)|+ sup  Az(2)|rif (rje(2))].
lp(z)|>rN lp(2)|>rN
Lé? L%z

Now we estimate L3 (s = 2,3). From Lemmas 1.1, 1.2, and (2) and (3),

1= ()P O (@2)] le(z)]*A(2)

L= sup <Ufllz sup ([ Tuwoks oz
2 @Iy EBRE (1= Jp(z)2) oy | )
j sup ||Tu,v7tpf1,a||2+ sup ||Tu7v,<pf2,a||2~

|a|>rN a|l>rn

Letting N — oo, we get

limsup LY, < ps_1 and limsup L, < max{o;, 02}
Jj—roo j—o0

Similarly, we have

lim sup L§2 =< ps—1 and limsup L§2 = max{o1,02}.
j—o0 j—o0

By using (4), (5), (6),(7), (8), (9), (10) and (11), we obtain

max{ao, 0-170-2} = lim sup sup ||(Tu,v7tp - Tu,v7tpK7‘j)f||Z = lim sup HTum,ga - Tu,v,gaKrj HZ—)Z
Jj—ooo |Ifllz<1 J—roo

and

maX{pO7 P1, 1)2} >__ hm sup ||Tu,v,tp - Tu,'u,cpKT'j ||Z—)Z-

j—o0

Hence,

min{max{c;}7_o, max{p;}i_o} = limsup | Ty — T Ko, 22
j—o0

The proof is completed.

Theorem 3.4. Let u,v € H(D), ¢ be an analytic self-map of D and T,y : 2 — Z be bounded. Then

Yup? + jop? |2}

limsupj~

|e.zy— 2z ~ max{lim sup E(z) log
1- Jj—o0

lp(2)|—=1

1Tuvplle,z—2 = | Tuv,e ()2’

where ;lvl(z) is defined in (1).
23
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Proof. Let pj(z) = z7. It is clear that {j~'p;}5° C Zy and j~'p; — 0 uniformly on compact subsets of D as
j — 0. So, for any compact operator K : Zy, — Z, we have lim; o || Kp;||z = 0. Thus,

1T, = Kl 2oz = limsup j = [(Tu,v,e — K)pjll 2 limsup i~ | To,0,004ll z — limsup j || Kpj]| 2
j—o0o J—0

J—00

= lim sup j 1 ug? + jue? | 2.

J—00

So, by using the last inequality and Lemma 3.2, we get

| Tu0plle.z—2 = | Tusv,plle. 20—z = max{limsup A;(z)log 5, limsup j " [|ug? + jug’ |z}
le(2)|—1 1—Je(z)?" jooo

Now we prove the other side. For any fix positive integer £ > 1 and i = 1,2, since T 4, : Z — Z is bounded, from
Theorem 2.2, we get

oo . .
24 (A ; S
| Tomiofiallz < Ci(1— a WZ( ' )Ialjllw“rjwj 1z
j=0

k-1 ,. . 00 . .
: l"‘] . P . . i : Z+] . P : . .
(1|a|2)’+2<||u||z+2< : )ﬂaw g + jog? 1||z> +<1|a|2>“22< ' )Jlalja g + jog 2
j=1 j=k

i+k-—1

S2Q(k—1)< o

)@= )0 =y 4 2 s g+ o
3>
where Q := max{sup,>, j " |ue’ + jup! |z, ||lullz}. Letting |a| — 1, we obtain

01 = limsup [Top frallz < sup i~ ug? + jugi " 2.
|a]—1 ji>k

Using last inequalitty and Theorem 3.3, we get
—~ 2
[Tu,00lle, 2z = max{limsup A;(2)log ~———, 01,02}
e lp(2)|—1 1—p(2)[?

< max{limsup A;(z)log B ETEL hmsupj_lHugpj + jue? Y|z}
o)1 — PP oo

The proof is complete
O
From Theorems 3.3 and 3.4, we get the following corollary.

Corollary 3.5. Let u,v € H(D) and ¢ be an analytic self-map of D such that T, ., : Z2 — Z be bounded. Then
the following statements are equivalent.

(a) The operator Ty, : Z — Z is compact.
(b) The operator Tuw,p 2 20 — Z 18 compact.

(c)

_ 2 . -
limsup A;(z)log ————% = limsup j ' [Jug’ + jug’ |z = 0.
p(2)|—1 1 =1p(z '

()2 oo

(d)

lim sup :ﬁlvl(z) log 5 = limsup || Ty o f1.allz = limsup [Ty, f2,0llz = 0.
lp(2)|—1 1 = [p(2)] la|—1 a|—1

(e)
o . Ax(2) . As(2)
limsup A;(2)log ————— = limsup ——————— = limsup —————~—— = 0.
lo(2)|—1 L=1o(2)?  joi)=1 A= 19(2)?)  jo)—1 (1= lp(2)?)?

Remark 3.6. Putting v = 0 in Theorems 2.2,3.3,3.4, and Corollary 3.5, we get some new characterizations for
boundedness, essential norm and compactness of operator uC,, : Z — Z (see Theorems 3.1 and 4.3 in [14] and

Theorems 2.2. and 3.5 in [2]).
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