Recognition by degree prime-power graph and order of some characteristically simple groups

Afsane Bahria, Behrooz Khosravia, Morteza Baniasad Azada

aDepartment of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

\textbf{ABSTRACT:} In this paper, by the order of a group and triviality of $O_p(G)$ for some prime p, we give a new characterization for some characteristically simple groups. In fact, we prove that if $p \in \{5, 17, 23, 37, 47, 73\}$ and $n \leq p$, where n is a natural number, then $G \cong \text{PSL}(2, p)^n$ if and only if $|G| = |\text{PSL}(2, p)|^n$ and $O_p(G) = 1$.

Recently in [Qin, Yan, Shum and Chen, Comm. Algebra, 2019], the degree prime-power graph of a finite group have been introduced and it is proved that the Mathieu groups are uniquely determined by their degree prime-power graphs and orders. As a consequence of our results, we show that PSL$(2, p)^n$, where $p \in \{5, 17, 23, 37, 47, 73\}$ and $n \leq p$ are uniquely determined by their degree prime-power graphs and orders.

\textbf{Keywords:}
Degree prime power graph
Order
Characteristically simple group
Characterization

\section{1. Introduction}

Throughout the paper, G is a finite group. The set of all prime divisors of $|G|$ is denoted by $\pi(G)$. By G^n, we mean the direct product of n copies of G. Let $\text{cd}(G)$ be the set of irreducible character degrees of G, and $\rho(G)$ the set of primes dividing the elements in $\text{cd}(G)$. Some graphs are defined concerning to the irreducible characters of a finite group. We refer the readers to a survey by Lewis [7] for results concerning graphs associated with character degrees. The character degree graph of G, which is denoted by $\Delta(G)$ was introduced by Manz et al. in 1998 (see [8]). The vertex set of $\Delta(G)$ is $\rho(G)$ and there exists an edge between two distinct elements $a, b \in \rho(G)$, if ab divides some irreducible character degree in $\text{cd}(G)$.

In [4, 5, 6], the authors proved that A_5, $A_5 \times A_5$ and some other groups are characterizable by their character degree graphs and orders. Obviously, A_5^n, where $n > 2$, is not uniquely determined by $\Delta(A_5^n)$ and $|A_5^n|$, since A_5 and $A_5 \times A_5 \times L$, where L is a group of order 60^{n-2} have the same order and character degree graph (see Figure 1).

There also exist some simple groups, say M_{12}, which are not characterizable by their character degree graphs and orders. For this reason, Qin \textit{et al.} in [10] have introduced a new graph related to irreducible characters of a finite group as follows and they showed that the Mathieu groups are characterizable by this graph and order.

\textbf{Notation.} Let n and a be integers such that $(a, n) = 1$. Then, $\text{ord}_m(a)$ denotes the smallest positive integer c such that $a^c \equiv 1 \pmod{m}$. In addition, for a prime p, we write $p^k|n$, whenever $p^k \mid n$ but $p^{k+1} \nmid n$. In this case, we also write $n_p = p^k$.

\textbf{Definition 1.1.} The degree prime-power graph $\Gamma(G)$ is defined as follow:
For each $p \in \rho(G)$ let $b(p) = \text{max}\{a_p | a \in \text{cd}(G)\}$. The vertex set of $\Gamma(G)$ is $V = \{b(p) | p \in \rho(G)\}$ and there is an edge between distinct vertices $x, y \in V$ if xy divides an element of $\text{cd}(G)$.
In this paper, for a characteristically simple group G we present a new characterization based on the order of G and $O_p(G)$, for some $p \in \pi(G)$. Our main result is:

Theorem 1.2. Let G be a finite group, and $M = \text{PSL}(2, p^n)$, where $p \in \{5, 17, 23, 37, 47, 73\}$, $n \leq p$. Then $G \cong M$ if and only if $|G| = |M|$ and $|O_p(G)| = |O_p(M)| = 1$.

As a consequence of our results, we show that these groups are uniquely determined by their degree prime-power graphs and orders.

2. Preliminary Results

Lemma 2.1. [11, Lemma] Let G be a non-solvable group. Then G has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic non-abelian simple groups and $|G/K| \mid |\text{Out}(K/H)|$.

Lemma 2.2. [9, Theorems 3.6] Let p be an odd prime, and let $a \neq \pm 1$ be an integer not divisible by p. Let also d be the order of a modulo p and k_0 the largest integer such that $a^d \equiv 1 \pmod{p^{k_0}}$. Then the order of a modulo p^k is d for $k = 1, \ldots, k_0$ and dp^{k-k_0} for $k > k_0$.

Lemma 2.3. [1, Lemma 2.2] Let S be a finite non-abelian simple group, and p_0 be the largest prime divisor of $|S|$. If G is an extension of S^m by S^n, where $m + n \leq p_0$, then $G \cong S^{m+n}$.

Lemma 2.4. Let S be a subnormal subgroup of G, and $O_p(G) = 1$, where $p \in \pi(G)$. Then $O_p(S) = 1$.

Proof. It is straightforward.

3. Main Results

Lemma 3.1. Let $p \in \{5, 17, 23, 37, 47, 73\}$, $|G|$ be a divisor of $|\text{PSL}(2, p)|^n$ and $p^n \mid |G|$, where n is a natural number. If $O_p(G) = 1$, then G is non-solvable.

Proof. Let $|G| = p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}p^n$ and define

$$
\beta(G) = \left(\frac{\alpha_1}{\text{ord}_{p}(p_1)} + \frac{\alpha_2}{\text{ord}_{p}(p_2)} + \cdots + \frac{\alpha_k-1}{\text{ord}_{p}(p_k-1)}\right) \frac{p}{p-1}.
$$

Firstly, in each case we prove that $\beta(G) < n$. Assume that $p = 73$. Thus, $|G| = 2^{\alpha_1}3^{\alpha_2}37^{\alpha_3}73^n$ is a divisor of $2^{3n}3^{2n}37^n73^n$. Therefore, by Table 1, we have

$$
\beta(G) \leq \left(\frac{\alpha_1}{\text{ord}_{73}(2)} + \frac{\alpha_2}{\text{ord}_{73}(3)} + \frac{\alpha_3}{\text{ord}_{73}(37)}\right) \frac{73}{72} \leq \left(\frac{3n}{9} + \frac{2n}{12} + \frac{n}{9}\right) \frac{73}{72} = \frac{803}{1296}n < n.
$$

In other cases, similarly we get the result. For the details see Table 1.

On the other hand, by the assumptions,

$$
F(G) \cong O_{p_1}(G) \times O_{p_2}(G) \times \cdots \times O_{p_k-1}(G).
$$

If G is solvable, then $C_G(F(G)) \leq F(G)$. The Normalizer-Centralizer Theorem implies that $|G|$ is a divisor of $|F(G)| : |\text{Aut}(F(G))|$. Moreover, using [3], we conclude that $|G|$ is a divisor of $|F(G)| : |\text{GL}(\alpha_1, p_1)| : |\text{GL}(\alpha_2, p_2)| \cdots |\text{GL}(\alpha_{k-1}, p_{k-1})|$.

12
An upper bound for $\beta(G)$.

| p | $|\text{PSL}(2, p)|$ | An upper bound for $\beta(G)$ |
|-----|------------------|-------------------------------|
| 5 | $2^2 \cdot 3 \cdot 5$ | $\frac{2n}{4} + \frac{n}{4} = \frac{15}{16}$ |
| 17 | $2^4 \cdot 3^2 \cdot 17$ | $\frac{4n}{8} + \frac{2n}{16} = \frac{85}{16}$ |
| 23 | $2^3 \cdot 3 \cdot 11 \cdot 23$ | $\frac{3n}{11} + \frac{n}{22} = \frac{207}{53}$ |
| 37 | $2^2 \cdot 3^2 \cdot 19 \cdot 37$ | $\frac{2n}{36} + \frac{2n}{36} + \frac{n}{36} = \frac{259}{1296}$ |
| 47 | $2^4 \cdot 3 \cdot 23 \cdot 47$ | $\frac{4n}{23} + \frac{n}{23} = \frac{517}{2116}$ |
| 73 | $2^3 \cdot 3^2 \cdot 37 \cdot 73$ | $\frac{3n}{9} + \frac{2n}{12} + \frac{n}{72} = \frac{803}{1296}$ |

Table 1: An upper bound for $\beta(G)$.

Therefore, p^n is a divisor of $|\text{GL}(\alpha_1, p)| \cdot |\text{GL}(\alpha_2, p_2)| \cdots |\text{GL}(\alpha_k, p_k)|$. It also is easy to check for each prime divisor p_i of $p^2 - 1$, we have $\text{ord}_{p^i}(p_i) = p \times \text{ord}_p(p_i)$. Hence, by Lemma 2.2,

$$n = \left\lfloor \frac{\alpha_1}{\text{ord}_p(p_1)} \right\rfloor + \left\lfloor \frac{\alpha_1}{\text{ord}_p(p_1)^2} \right\rfloor + \left\lfloor \frac{\alpha_1}{\text{ord}_p(p_1)^3} \right\rfloor + \cdots$$

$$+ \left\lfloor \frac{\alpha_2}{\text{ord}_p(p_2)} \right\rfloor + \left\lfloor \frac{\alpha_2}{\text{ord}_p(p_2)^2} \right\rfloor + \left\lfloor \frac{\alpha_2}{\text{ord}_p(p_2)^3} \right\rfloor + \cdots$$

$$
\vdots
$$

$$+ \left\lfloor \frac{\alpha_{k-1}}{\text{ord}_p(p_{k-1})} \right\rfloor + \left\lfloor \frac{\alpha_{k-1}}{\text{ord}_p(p_{k-1})} \right\rfloor + \left\lfloor \frac{\alpha_{k-1}}{\text{ord}_p(p_{k-1})} \right\rfloor + \cdots$$

$$< \left(\frac{\alpha_1}{\text{ord}_p(p_1)} + \frac{\alpha_2}{\text{ord}_p(p_2)} + \cdots + \frac{\alpha_{k-1}}{\text{ord}_p(p_{k-1})} \right) \left(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots \right)$$

$$= \left(\frac{\alpha_1}{\text{ord}_p(p_1)} + \frac{\alpha_2}{\text{ord}_p(p_2)} + \cdots + \frac{\alpha_{k-1}}{\text{ord}_p(p_{k-1})} \right) \frac{p}{p - 1} < n,$$

which is a contradiction.

Using [12], we have the following result:

Lemma 3.2. Let S be a non-abelian simple group with $\pi(S) \subseteq \pi(\text{PSL}(2, p))$, where $p \in \{5, 17, 23, 37, 47, 73\}$. Then $S \cong \text{PSL}(2, p)$.

Proof. [Proof of Theorem 1.2]

Lemma 3.1 implies that G is non-solvable. Using Lemma 2.1, G contains a normal series $1 \leq H_1 \leq K_1 \leq G$ such that K_1/H_1 is a non-abelian characteristically simple group and $|G/K_1| = |\text{Out}(K_1/H_1)|$.

If H_1 is non-solvable, then there exists a normal series $1 \leq H_2 \leq K_2 \leq H_1$ such that K_2/H_2 is a non-abelian characteristically simple group and $|H_1/K_2| = |\text{Out}(K_2/H_2)|$. By proceeding, we have the following subnormal series:

$$1 \leq H_m \leq K_m \leq H_{m-1} \leq K_{m-1} \cdots \leq H_2 \leq K_2 \leq H_1 \leq K_1 \leq G = H_0,$$

where $m \geq 1$ is the smallest integer such that H_m is solvable, and so

$$|G| = |H_m| \prod_{i=1}^{m} |K_i/H_i||H_{i-1}/K_i|.$$
Now, we consider the following cases:

(I) Assume that \(p \mid \prod_{i=1}^{m} |H_{i-1}/K_{i}| \). We also know \(p \) does not divide \(|\text{Out}(\text{PSL}(2, p))| \). Therefore, there exists \(1 \leq i \leq m \) such that

\[
p \mid |H_{i-1}/K_{i}| = |\text{Out}(\text{PSL}(2, p))|^{n_{i}}! \implies p \mid n_{i}!,
\]

and so \(p \leq n_{i} \). Since \(n_{i} \leq n \leq p \), \(n \) is equal to \(p \). Thus, \(p^{n} \mid |K_{i}/H_{i}| \). As a result, \(p^{n+1} \) divides \(|G| \), a contradiction. Hence, \(p \mid \prod_{i=1}^{m} |H_{i-1}/K_{i}| \).

(II) If \(p \mid |H_{m}| \), then there exists a natural number \(a \) such that \(p^{a} \mid |H_{m}| \). Therefore, \(p^{a} \) is a divisor of

\[
t = |H_{m}| \prod_{i=1}^{m} |H_{i-1}/K_{i}| = |G|/\prod_{i=1}^{m} |K_{i}/H_{i}|.
\]

Hence, \(t \) is a divisor of \(|\text{PSL}(2, p)|^{n}/|\text{PSL}(2, p)|^{c} \), where \(p^{c} \mid \prod_{i=1}^{m} |K_{i}/H_{i}| \), and \(c \) is a natural number. Hence, \(n = a + c \), and so \(|H_{m}| \) is a divisor of \(|\text{PSL}(2, p)|^{a} \).

By Lemma 3.1, we get a contradiction. Thus, \(p \nmid |H_{m}| \).

By the above discussion, \(p^{a} \mid \prod_{i=1}^{m} |K_{i}/H_{i}| \), and since each \(K_{i}/H_{i} \) is a direct product of \(n_{i} \) copies of \(\text{PSL}(2, p) \), we get \(H_{m-1} = K_{i} \), where \(1 \leq i \leq m \). Then, \(\sum_{i=1}^{m} n_{i} = n \). Thus, we conclude that

\[
1 = H_{m-1} \leq H_{m-2} \leq \cdots \leq H_{2} \leq H_{1} \leq G \leq H_{0}.
\]

Using Lemma 2.3, since \(H_{m-1} \cong H_{m} \cong \text{PSL}(2, p)^{n_{m}} \) and \(H_{m-2}/H_{m-1} \cong H_{m-1}/H_{m} \) we get \(H_{m-2} \cong H_{m-1} \), and so \(G \) is isomorphic to \(\text{PSL}(2, p)^{n} \).

By [2, Corollary 11.29], we deduce that if \(a \in \text{cd}(G) \) such that \(a_{p} = |G|_{p} \), then \(O_{p}(G) = 1 \). Therefore, we have the following corollary:

Corollary 3.3. Let \(G \) be a finite group, \(p \in \{5, 17, 23, 37, 47, 73\} \) and \(n \leq p \), where \(n \) is a natural number. Then the following are equivalent.

1. \(G \) is isomorphic to \(\text{PSL}(2, p)^{n} \);
2. \(|G| = |\text{PSL}(2, p)^{n}| \) and \(p^{n} \in V(\Gamma(G)) \);
3. \(|G| = |\text{PSL}(2, p)^{n}| \) and \(p^{n} \in \text{cd}(G) \);
4. \(|G| = |\text{PSL}(2, p)^{n}| \) and \(\Gamma(G) = \Gamma(\text{PSL}(2, p)^{n}) \).

Acknowledgement

The authors are very thankful to the referee for valuable comments.

References

