

AUT Journal of Mathematics and Computing

Original Article

Recognition by degree prime-power graph and order of some characteristically simple groups

Afsane Bahri ${ }^{\text {a }}$, Behrooz Khosravi ${ }^{*}$, Morteza Baniasad Azad ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

In this paper, by the order of a group and triviality of $O_{p}(G)$ for some prime p, we give a new characterization for some characteristically simple groups. In fact, we prove that if $p \in\{5,17,23,37,47,73\}$ and $n \leqslant p$, where n is a natural number, then $G \cong \operatorname{PSL}(2, p)^{n}$ if and only if $|G|=|\operatorname{PSL}(2, p)|^{n}$ and $O_{p}(G)=1$.

Recently in [Qin, Yan, Shum and Chen, Comm. Algebra, 2019], the degree primepower graph of a finite group have been introduced and it is proved that the Mathieu groups are uniquely determined by their degree prime-power graphs and orders. As a consequence of our results, we show that $\operatorname{PSL}(2, p)^{n}$, where $p \in\{5,17,23,37,47,73\}$ and $n \leqslant p$ are uniquely determined by their degree prime-power graphs and orders.

Review History:

Received:12 May 2020
Accepted:16 September 2020
Available Online:01 February 2021

Keywords:

Degree prime power graph Order
Characteristically simple group
Characterization

AMS Subject Classification (2010):

20C15; 20D05

1. Introduction

Throughout the paper, G is a finite group. The set of all prime divisors of $|G|$ is denoted by $\pi(G)$. By G^{n}, we mean the direct product of n copies of G. Let $\operatorname{cd}(G)$ be the set of irreducible character degrees of G, and $\rho(G)$ the set of primes dividing the elements in $\operatorname{cd}(G)$. Some graphs are defined concerning to the irreducible characters of a finite group. We refer the readers to a survey by Lewis [7] for results concerning graphs associated with character degrees. The character degree graph of G, which is denoted by $\Delta(G)$ was introduced by Manz et al. in 1998 (see [8]). The vertex set of $\Delta(G)$ is $\rho(G)$ and there exists an edge between two distinct elements $a, b \in \rho(G)$, if $a b$ divides some irreducible character degree in $\operatorname{cd}(G)$.

In $[4,5,6]$, the authors proved that $A_{5}, A_{5} \times A_{5}$ and some other groups are characterizable by their character degree graphs and orders. Obviously, A_{5}^{n}, where $n>2$, is not uniquely determined by $\Delta\left(A_{5}^{n}\right)$ and $\left|A_{5}^{n}\right|$, since A_{5}^{n} and $A_{5} \times A_{5} \times L$, where L is a group of order 60^{n-2} have the same order and character degree graph (see Figure 1). There also exist some simple groups, say M_{12}, which are not characterizable by their character degree graphs and orders. For this reason, Qin et al. in [10] have introduced a new graph related to irreducible characters of a finite group as follows and they showed that the Mathieu groups are characterizable by this graph and order.

Notation. Let m and a be integers such that $(a, m)=1$. Then, $\operatorname{ord}_{m}(a)$ denotes the smallest positive integer e such that $a^{e} \equiv 1(\bmod m)$. In addition, for a prime p, we write $p^{k} \| n$, whenever $p^{k} \mid n$ but $p^{k+1} \nmid n$. In this case, we also write $n_{p}=p^{k}$.

[^0]Definition 1.1. The degree prime-power graph $\Gamma(G)$ is defined as follow:
For each $p \in \rho(G)$ let $b(p)=\max \left\{a_{p} \mid a \in \operatorname{cd}(G)\right\}$. The vertex set of $\Gamma(G)$ is $V=\{b(p) \mid p \in \rho(G)\}$ and there is an edge between distinct vertices $x, y \in V$ if $x y$ divides an element of $\operatorname{cd}(G)$.

In this paper, for a characteristically simple group G we present a new characterization based on the order of G and $O_{p}(G)$, for some $p \in \pi(G)$. Our main result is:

Theorem 1.2. Let G be a finite group, and $M=\operatorname{PSL}(2, p)^{n}$, where $p \in\{5,17,23,37,47,73\}, n \leq p$. Then $G \cong M$ if and only if $|G|=|M|$ and $\left|O_{p}(G)\right|=\left|O_{p}(M)\right|=1$.

As a consequence of our results, we show that these groups are uniquely determined by their degree prime-power graphs and orders.

2. Preliminary Results

Lemma 2.1. [11, Lemma] Let G be a non-solvable group. Then G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a direct product of isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

Lemma 2.2. [9, Theorems 3.6] Let p be an odd prime, and let $a \neq \pm 1$ be an integer not divisible by p. Let also d be the order of a modulo p and k_{0} the largest integer such that $a^{d} \equiv 1\left(\bmod p^{k_{0}}\right)$. Then the order of a modulo p^{k} is d for $k=1, \ldots, k_{0}$ and $d p^{k-k_{0}}$ for $k>k_{0}$.

Lemma 2.3. [1, Lemma 2.2] Let S be a finite non-abelian simple group, and p_{0} be the largest prime divisor of $|S|$. If G is an extension of S^{m} by S^{n}, where $m+n \leqslant p_{0}$, then $G \cong S^{m+n}$.

Lemma 2.4. Let S be a subnormal subgroup of G, and $O_{p}(G)=1$, where $p \in \pi(G)$. Then $O_{p}(S)=1$.
Proof. It is straightforward.

3. Main Results

Lemma 3.1. Let $p \in\{5,17,23,37,47,73\},|G|$ be a divisor of $|\operatorname{PSL}(2, p)|^{n}$ and $p^{n}| | G \mid$, where n is a natural number. If $O_{p}(G)=1$, then G is non-solvable.

Proof. Let $|G|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k-1}^{\alpha_{k-1}} p^{n}$ and define

$$
\beta(G)=\left(\frac{\alpha_{1}}{\operatorname{ord}_{p}\left(p_{1}\right)}+\frac{\alpha_{2}}{\operatorname{ord}_{p}\left(p_{2}\right)}+\cdots+\frac{\alpha_{k-1}}{\operatorname{ord}_{p}\left(p_{k-1}\right)}\right) \frac{p}{p-1} .
$$

Firstly, in each case we prove that $\beta(G)<n$. Assume that $p=73$. Thus, $|G|=2^{\alpha_{1}} 3^{\alpha_{2}} 37^{\alpha_{3}} 73^{n}$ is a divisor of $2^{3 n} 3^{2 n} 37^{n} 73^{n}$. Therefore, by Table 1, we have

$$
\begin{aligned}
\beta(G) & =\left(\frac{\alpha_{1}}{\operatorname{ord}_{73}(2)}+\frac{\alpha_{2}}{\operatorname{ord}_{73}(3)}+\frac{\alpha_{3}}{\operatorname{ord}_{73}(37)}\right) \frac{73}{72} \\
& \leqslant\left(\frac{3 n}{9}+\frac{2 n}{12}+\frac{n}{9}\right) \frac{73}{72}=\frac{803}{1296} n<n .
\end{aligned}
$$

In other cases, similarly we get the result. For the details see Table 1.
On the other hand, by the assumptions,

$$
\mathrm{F}(G) \cong O_{p_{1}}(G) \times O_{p_{2}}(G) \times \cdots \times O_{p_{k-1}}(G)
$$

If G is solvable, then $C_{G}(\mathrm{~F}(G)) \leq \mathrm{F}(G)$. The Normalizer-Centralizer Theorem implies that $|G|$ is a divisor of $|\mathrm{F}(G)|$. $|\operatorname{Aut}(\mathrm{F}(G))|$. Moreover, using [2], we conclude that $|G|$ is a divisor of $|\mathrm{F}(G)| \cdot\left|\mathrm{GL}\left(\alpha_{1}, p_{1}\right)\right| \cdot\left|\mathrm{GL}\left(\alpha_{2}, p_{2}\right)\right| \cdots\left|\mathrm{GL}\left(\alpha_{k-1}, p_{k-1}\right)\right|$.

p	$\|\operatorname{PSL}(2, \mathrm{p})\|$	An upper bound for $\beta(G)$
5	$2^{2} \cdot 3 \cdot 5$	$\left(\frac{2 n}{4}+\frac{n}{4}\right) \frac{5}{4}=\frac{15}{16} n$
17	$2^{4} \cdot 3^{2} \cdot 17$	$\left(\frac{4 n}{8}+\frac{2 n}{16}\right) \frac{17}{16}=\frac{85}{128} n$
23	$2^{3} \cdot 3 \cdot 11 \cdot 23$	$\left(\frac{3 n}{11}+\frac{n}{11}+\frac{n}{22}\right) \frac{23}{22}=\frac{207}{484} n$
37	$2^{2} \cdot 3^{2} \cdot 19 \cdot 37$	$\left(\frac{2 n}{36}+\frac{2 n}{18}+\frac{n}{36}\right) \frac{37}{36}=\frac{259}{1296} n$
47	$2^{4} \cdot 3 \cdot 23 \cdot 47$	$\left(\frac{4 n}{23}+\frac{n}{23}+\frac{n}{46}\right) \frac{47}{46}=\frac{517}{2116} n$
73	$2^{3} \cdot 3^{2} \cdot 37 \cdot 73$	$\left(\frac{3 n}{9}+\frac{2 n}{12}+\frac{n}{9}\right) \frac{73}{72}=\frac{803}{1296} n$

Table 1: An upper bound for $\beta(G)$.

Therefore, p^{n} is a divisor of $\left|\mathrm{GL}\left(\alpha_{1}, p_{1}\right)\right| \cdot\left|\mathrm{GL}\left(\alpha_{2}, p_{2}\right)\right| \cdots\left|\mathrm{GL}\left(\alpha_{k-1}, p_{k-1}\right)\right|$. It also is easy to check for each prime divisor p_{i} of $p^{2}-1$, we have $\operatorname{ord}_{p^{2}}\left(p_{i}\right)=p \times \operatorname{ord}_{p}\left(p_{i}\right)$. Hence, by Lemma 2.2,

$$
\begin{aligned}
n & =\left\lfloor\frac{\alpha_{1}}{\operatorname{ord}_{p}\left(p_{1}\right)}\right\rfloor+\left\lfloor\frac{\alpha_{1}}{\operatorname{ord}_{p^{2}}\left(p_{1}\right)}\right\rfloor+\left\lfloor\frac{\alpha_{1}}{\operatorname{ord}_{p^{3}}\left(p_{1}\right)}\right\rfloor+\cdots \\
& +\left\lfloor\frac{\alpha_{2}}{\operatorname{ord}_{p}\left(p_{2}\right)}\right\rfloor+\left\lfloor\frac{\alpha_{2}}{\operatorname{ord}_{p^{2}}\left(p_{2}\right)}\right\rfloor+\left\lfloor\frac{\alpha_{2}}{\operatorname{ord}_{p^{3}}\left(p_{2}\right)}\right\rfloor+\cdots \\
& \vdots \\
& +\left\lfloor\frac{\alpha_{k-1}}{\operatorname{ord}_{p}\left(p_{k-1}\right)}\right\rfloor+\left\lfloor\frac{\alpha_{k-1}}{\operatorname{ord}_{p^{2}}\left(p_{k-1}\right)}\right\rfloor+\left\lfloor\frac{\alpha_{k-1}}{\operatorname{ord}_{p^{3}}\left(p_{k-1}\right)}\right\rfloor+\cdots \\
& <\left(\frac{\alpha_{1}}{\operatorname{ord}_{p}\left(p_{1}\right)}+\frac{\alpha_{2}}{\operatorname{ord}_{p}\left(p_{2}\right)}+\cdots+\frac{\alpha_{k-1}}{\operatorname{ord}_{p}\left(p_{k-1}\right)}\right)\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right) \\
& =\left(\frac{\alpha_{1}}{\operatorname{ord}_{p}\left(p_{1}\right)}+\frac{\alpha_{2}}{\operatorname{ord}_{p}\left(p_{2}\right)}+\cdots+\frac{\alpha_{k-1}}{\operatorname{ord}_{p}\left(p_{k-1}\right)}\right) \frac{p}{p-1}<n,
\end{aligned}
$$

which is a contradiction.
Using [12], we have the following result:
Lemma 3.2. Let S be a non-abelian simple group with $\pi(S) \subseteq \pi(\operatorname{PSL}(2, p))$, where $p \in\{5,17,23,37,47,73\}$. Then $S \cong \operatorname{PSL}(2, p)$.
Proof of Theorem 1.2. Lemma 3.1 implies that G is non-solvable. Using Lemma 2.1, G contains a normal series $1 \unlhd H_{1} \unlhd K_{1} \unlhd G$ such that K_{1} / H_{1} is a non-abelian characteristically simple group and $\left|G / K_{1}\right|\left|\left|\operatorname{Out}\left(K_{1} / H_{1}\right)\right|\right.$.

If H_{1} is non-solvable, then there exists a normal series $1 \unlhd H_{2} \unlhd K_{2} \unlhd H_{1}$ such that K_{2} / H_{2} is a non-abelian characteristically simple group and $\left|H_{1} / K_{2}\right|\left|\left|\operatorname{Out}\left(K_{2} / H_{2}\right)\right|\right.$. By proceeding, we have the following subnormal series:

$$
\begin{equation*}
1 \unlhd H_{m} \unlhd K_{m} \unlhd H_{m-1} \unlhd K_{m-1} \cdots \unlhd H_{2} \unlhd K_{2} \unlhd H_{1} \unlhd K_{1} \unlhd G=H_{0} \tag{1}
\end{equation*}
$$

where $m \geqslant 1$ is the smallest integer such that H_{m} is solvable, and so

$$
|G|=\left|H_{m}\right| \prod_{i=1}^{m}\left|K_{i} / H_{i}\right|\left|H_{i-1} / K_{i}\right|
$$

We note K_{i} / H_{i} is a direct product of n_{i} copies of a non-abelian simple group S_{i} such that $\left|H_{i-1} / K_{i}\right|\left|\left|\operatorname{Out}\left(K_{i} / H_{i}\right)\right|\right.$. Lemma 3.2 leads us to $S_{i} \cong \operatorname{PSL}(2, p)$.

Now, we consider the following cases:
(I) Assume that $p\left|\prod_{i=1}^{m}\right| H_{i-1} / K_{i} \mid$. We also know p does not divide $|\operatorname{Out}(\operatorname{PSL}(2, p))|$. Therefore, there exists $1 \leqslant i \leqslant m$ such that

$$
p\left|\left|H_{i-1} / K_{i}\right|=|\operatorname{Out}(\operatorname{PSL}(2, p))|^{n_{i}} n_{i}!\Longrightarrow p\right| n_{i}!
$$

and so $p \leqslant n_{i}$. Since $n_{i} \leqslant n \leqslant p, n$ is equal to p. Thus, $p^{n}| | K_{i} / H_{i} \mid$. As a result, p^{n+1} divides $|G|$, a contradiction. Hence, $p \nmid \prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right|$.
(II) If $p\left|\left|H_{m}\right|\right.$, then there exists a natural number a such that $p^{a} \|\left|H_{m}\right|$. Therefore, p^{a} is a divisor of

$$
t=\left|H_{m}\right| \prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right|=|G| / \prod_{i=1}^{m}\left|K_{i} / H_{i}\right| .
$$

Hence, t is a divisor of $|\operatorname{PSL}(2, p)|^{n} /|\operatorname{PSL}(2, p)|^{c}$, where $p^{c} \| \prod_{i=1}^{m}\left|K_{i} / H_{i}\right|$, and c is a natural number. Hence, $n=a+c$, and so $\left|H_{m}\right|$ is a divisor of $|\operatorname{PSL}(2, p)|^{a}$.

Lemma 2.4 implies that $O_{p}\left(H_{m}\right)=1$. By Lemma 3.1, we get a contradiction. Thus, $p \nmid\left|H_{m}\right|$.
By the above discussion, $p^{n} \| \prod_{i=1}^{m}\left|K_{i} / H_{i}\right|$, and since each K_{i} / H_{i} is a direct product of n_{i} copies of PSL $(2, p)$, we get $H_{m}=1, H_{i-1}=K_{i}$, where $1 \leqslant i \leqslant m$. Then, $\sum_{i=1}^{m} n_{i}=n$. Thus, We conclude that

$$
1=H_{m} \unlhd H_{m-1} \unlhd H_{m-2} \cdots \unlhd H_{2} \unlhd H_{1} \unlhd G=H_{0} .
$$

Using Lemma 2.3, since $H_{m-1} \cong \operatorname{PSL}(2, p)^{n_{m}}$ and $H_{m-2} / H_{m-1} \cong \operatorname{PSL}(2, p)^{n_{m-1}}$ we get $H_{m-2} \cong \operatorname{PSL}(2, p)^{n_{m}+n_{m-1}}$, and so G is isomorphic to $\operatorname{PSL}(2, p)^{n}$.

By [3, Corollary 11.29], we deduce that if $a \in \operatorname{cd}(G)$ such that $a_{p}=|G|_{p}$, then $O_{p}(G)=1$. Therefore, we have the following corollary:

Corollary 3.3. Let G be a finite group, $p \in\{5,17,23,37,47,73\}$ and $n \leqslant p$, where n is a natural number. Then the following are equivalent.
(1) G is isomorphic to $\operatorname{PSL}(2, p)^{n}$;
(2) $|G|=\left|\operatorname{PSL}(2, p)^{n}\right|$ and $p^{n} \in V(\Gamma(G))$;
(3) $|G|=\left|\operatorname{PSL}(2, p)^{n}\right|$ and $p^{n} \in \operatorname{cd}(G)$;
(4) $|G|=\left|\operatorname{PSL}(2, p)^{n}\right|$ and $\Gamma(G)=\Gamma\left(\operatorname{PSL}(2, p)^{n}\right)$.

Acknowledgement

The authors are very thankful to the referee for valuable comments.

References

[1] M. Baniasad Azad and B. Khosravi, Recognition of some characteristically simple groups by their complex group algebras, Math. Rep. (Bucur.), 22(72) (2020), pp. 1-10.
[2] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2), 36 (1934), pp. 29-95.
[3] I. M. Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976.
[4] M. Khademi and B. Khosravi, Recognition of characteristically simple group $A_{5} \times A_{5}$ by character degree graph and order, Czechoslovak Math. J., 68(143) (2018), pp. 1149-1157.
[5] B. Khosravi, B. Khosravi, B. Khosravi, and Z. Momen, Recognition by character degree graph and order of the simple groups of order less than 6000., Miskolc Math. Notes, 15 (2014), pp. 537-544.
[6] B. Khosravi, B. Khosravi, B. Khosravi, and Z. Momen, Recognition of some simple groups by character degree graph and order, Math. Rep. (Bucur.), 18(68) (2016), pp. 51-61.
[7] M. L. Lewis, An overview of graphs associated with character degrees and conjugacy class sizes in finite groups, Rocky Mountain J. Math., 38 (2008), pp. 175-211.
[8] O. Manz, R. Staszewski, and W. Willems, On the number of components of a graph related to character degrees, Proc. Amer. Math. Soc., 103 (1988), pp. 31-37.
[9] M. B. Nathanson, Elementary methods in number theory, vol. 195 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.
[10] C. Qin, Y. Yan, K. Shum, and G. Chen, Mathieu groups and its degree prime-power graphs, Comm. Algebra, 47 (2019), pp. 4173-4180.
[11] H. Xu, G. Chen, and Y. Yan, A new characterization of simple K_{3}-groups by their orders and large degrees of their irreducible characters, Comm. Algebra, 42 (2014), pp. 5374-5380.
[12] A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Sib. Èlektron. Mat. Izv., 6 (2009), pp. 1-12.

Please cite this article using:
Afsane Bahri, Behrooz Khosravi, Morteza Baniasad Azad, Recognition by degree primepower graph and order of some characteristically simple groups,AUT J. Math. Com., 2(1) (2021) 11-15

DOI: 10.22060/ajmc.2020.18418.1033

[^0]: *Corresponding author.
 E-mail addresses: afsanebahri@aut.ac.ir, khosravibbb@yahoo.com, baniasad84@gmail.com

