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ABSTRACT: Let G = (V,E) be a simple graph without isolated vertices. A set
D ⊂ V is a total [1, 2]-dominating set if for every vertex v ∈ V , 1 ≤ |N(v) ∩D| ≤ 2.
The total [1, 2]-domination problem is to determine the total [1, 2]-domination number
γt[1,2](G), which is the minimum cardinality of a total [1, 2]-dominating set for a graph
G. In this paper, we present a linear-time algorithm to compute γt[1,2](G) for a block
graph G.
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1. Introduction

All graphs considered here are simple, i.e., finite, undirected, and loop-less. For other graph theory terminology
and notation not given here we refer to [10].

Let G = (V,E) be a graph. The open neighborhood of a vertex v ∈ V is the set of all vertices adjacent to
v and is denoted by N(v). Similarly, the closed neighborhood of a vertex v is N [v] = N(v) ∪ {v}. In connected
graph G, a vertex is called a cut-vertex of G if its removal produses a disconnected graph. A block of a graph G
is a maximal connected induced subgraph of G that has no cut-vertex. A block graph is a graph whose blocks
are complete graphs. A subset D ⊆ V is called a dominating set, if every vertex in V is contained in D or has a
neighbor in D. The domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set. A
total dominating set of a simple graph G = (V,E) without isolated vertex, is a set S ⊆ V such that every vertex is
adjacent to a vertex in S. The minimum cardinality of a total dominating set is denoted by γt(G). The minimum
dominating set problem is an NP -hard problem [8, 7, 9].

A set S ⊆ V is called a [1, 2]-set of G if for each v ∈ V − S, v is adjacent to at least one but not more than
two vertices in S. The total [1, 2]-set is a set S ⊆ V such that for each v ∈ V , 1 ≤ |N(v) ∩ S| ≤ 2. The total [1, 2]-
domination number, denoted by γt[1,2](G), is the minimum cardinality of a total [1, 2]-dominating set for a graph G.
We note that in the problem total [1, 2]-dominating set, there are some graphs without any total [1, 2]-dominating
sets, such as the graphs with isolated vertices.
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The concept of [1, 2]-set and its variants such as total [1, 2]-set and independent [1, 2]-set are well studied by
Chellali et al. in [3, 4]. In [4], several open problems were proposed about [1, 2]-set and total [1, 2]-set. Some of
these problems were solved in [6, 2, 5]. In this paper we provide a linear-time algorithm for finding the minimum
cardinality of a total [1, 2]-dominating set for a block graph G.

2. Algorithm for computing total [1, 2]-domination number

Our algorithm relies on a tree-like decomposition structure, which is called a refined cut-tree of a block graph.
Let G be a block graph with t blocks B1, B2, · · · , Bt and q cut-vertices v1, v2, · · · , vq. The cut-tree of G,

denoted by TC(V C , EC), is defined as V C = {B1, B2, · · · , Bt, v1, v2, · · · , vq} and EC = {(Bi, vj) | vj ∈ Bi, 1 ≤
i ≤ h, 1 ≤ j ≤ q}. The cut-tree of a block graph can be constructed in linear-time by the depth-first search
algorithm [1]. For any block Bi of G, the block-vertex B̃i is defined as B̃i = {v ∈ Bi | v is not a cut-vertex}, where
1 ≤ i ≤ t. We can refine the cut-tree TC(V C , EC) as V C = {B̃1, · · · , B̃t, v1, · · · , vq} and EC = {(B̃i, vj) | vj ∈
Bi, 1 ≤ i ≤ t, 1 ≤ j ≤ q}. We notice that in the refined cut-tree of a block graph, a block-vertex can be empty.

A block graph G with 11 blocks B1, B2, · · · , B11 and the corresponding refined cut-tree of G are shown in
Figure 1.

Figure 1: Block graph G and the corresponding cut-tree of G

To compute γ[1,2](G), we traverse T in the post order and during traversing, we compute m−i [v], m+
i [v], S−0 (u),

S−0,1(u), S−1,2(u), S+
0 (u), S+

0,1(u) and S∗(u) where i = 0, 1, 2, v is cut-vertex and u ∈ V (T ) is block node.

• B as the set of all block nodes of T .

• C as the set of all cut-vertices of G.

• Tv as the subtree of T rooted at v.

• G[Tv] as the subgraph of G which corresponding to Tv.

• For the smallest [1, 2]-set S of Tv, every vertex in S is called (S, v)-black, and (S, v)-white otherwise. For
simplicity, we use the terms black and white instead of (S, v)-black and (S, v)-white, respectively.

• For each block node u ∈ V (T ) and v ∈ ch(u), depended on the color of v and the number of vertices which
dominate v, we define variables as bellow:

– For u ∈ V (T ), S−0 (u) is the size of the smallest [1, 2]-set of G[Tv] that all children of u are white and
they are not dominated.

– For u ∈ V (T ), S−0,1(u) is the size of the smallest [1, 2]-set of G[Tv] that all children of u are white and
they are dominated at most once.

– For u ∈ V (T ), S−1,2(u) is the size of the smallest [1, 2]-set of G[Tv] that all children of u are white and
they are dominated once or twice.

– For u ∈ V (T ), S+
0 (u) is the size of the smallest [1, 2]-set of G[Tv] that one child of u is black and it is

dominated at most once. Moreover the other children of u are white and they are not dominated.
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– For u ∈ V (T ), S+
0,1(u) is the size of the smallest [1, 2]-set of G[Tv] that one vertex of ch(u) is black and it

is dominated once or twice. Moreover the other children of u are white and they are dominated at most
once.

– For u ∈ V (T ), S∗(u) is the size of the smallest [1, 2]-set of G[Tv] that two black vertices of ch(u) are
dominated at most once. Moreover the other children of u are white and they are not dominated.

• For cut-vertex v ∈ V (T ), m−i [v] is the size of the smallest [1, 2]-set of G[Tv] that v is white and dominated by
i other vertices of G[Tv] for i = 0, 1, 2.

• For cut-vertex v ∈ V (T ), m+
i [v] is the size of the smallest [1, 2]-set of G[Tv] that v is black and dominated by

i other vertices of G[Tv] for i = 0, 1, 2.

Now, we use a refined cut tree T of a given block graph G and dynamic programming method to compute total
[1, 2]-domination number of G. The algorithm contains three step, Initializing step, Updating step and final step.

2.1. Initializing step:

Obviously, every leaf of cut-tree T is a block node and it is not empty. Since variables for block nodes are based
on color of its child, so in first step we begin our algorithm from pre-pendent node v of T , that is a cut vertex of
G. We initialize m+

i [v] and m−i [v] for i = 0, 1, 2 and pre-pendent node v of T as bellow:

m+
0 [v] = 1, m+

1 = 2, m+
2 = 3, m−0 [v] =∞,

m−1 [v] =

 1 if |ch(v)| = 1,

∞ Otherwise,
and m−2 [v] =

 2 if |ch(v)| = 2,

∞ Otherwise.

2.2. Updating step:

In the post order traversal of T , for each non pre-pendent node, based on type of them which are a block or
cut, we can consider the following cases:

2.3. Updating step for block nodes of T :

In this step, we define variables S−0 (u), S−0,1(u), S−1,2(u), S+
0 (u), S+

0,1(u) and S∗(u) for block node u of T . These
variables depend on the number of nodes in ch(u).
Calculating S−0 (u):

All children of u are white and they are not dominated. So:

S−0 (u) =
∑

v∈ch(u)

m−0 (v).

Calculating S−0,1(u):
All children of u are white and they are dominated at most once. So:

S−0,1(u) =
∑

v∈ch(u)

Min{m−0 (v),m−1 (v)}.

Calculating S−1,2(u):
All children of u are white and they are dominated at most once. So:

S−1,2(u) =
∑

v∈ch(u)

Min{m−1 (v),m−2 (v)}.

Calculating S+
0 (u):

One child vi ∈ ch(u) is black, it is dominated at most once and the other children of u are white and they are
not dominated. So:

S+
0 (u) = Minvi∈ch(u){Min{m+

0 (vi),m
+
1 (vi)}+

∑
v∈ch(u),v 6=vi

m−0 (v)}.

Calculating S+
0,1(u):
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One child vi ∈ ch(u) is black and it is dominated once or twice. Moreover the other children of u are white and
they are dominated at most once. So:

S+
0,1(u) = Minvi∈ch(u){Min{m+

1 (vi),m
+
2 (vi)}+

∑
v∈ch(u),v 6=vi

Min{m−0 (vi),m
−
1 (vi)}}.

Calculating S∗(u):
Two vertices of vi, vi′ ∈ ch(u) are black and they are dominated at most once. Moreover the other children of

u are white and they are not dominated. So:

S∗(u) = Minvi,vi′∈ch(u){Min{m+
0 (vi),m

+
1 (vi)}+ {Min{m+

0 (vi′),m
+
1 (vi′)}+

∑
v∈ch(u),v 6=vi,vi′

m−0 (vi)}.

2.4. Updating step for cut vertex of T :

In this step, for i = 0, 1, 2 we define variables m−0 i(v) and m+
i (v) for cut nodes v of T .

Calculating m+
0 (v) when v is not a pre-pendent:

In this case, v is black so all the children of v and all children of ch(v) already have a black neighbor. Since v
should not dominate by any vertices, So, all child u ∈ ch(v) must be white and they are dominated at most once.

m+
0 (v) = 1 +

∑
u∈ch(v)

S−0,1(u).

Calculating m+
1 (v) when v is not a pre-pendent:

In this case, v is black and it is dominated once, so one of the following cases can occurs:

• In this case, exactly one vertex of block ui ∈ ch(v) is black and other children of ui have color white and are
not dominated. For the other block u ∈ ch(v), all child are white and they are dominated at most once. We
have:

M+
1 = 1 +Minui∈ch(v),|ui|6=0{S−0 (ui) +

∑
u∈ch(v),u6=ui

S−0,1(u)}.

• For exactly one block ui ∈ ch(v), one nodes of ch(ui) and the black vertex dominate at most once. The other
vertices of ch(ui) are white and they are not dominated. In addition, for the other block u ∈ ch(v), all of
their children are white and they are dominated at most once. We have:

M ′+1 = Minui∈ch(v){S
+
0 (ui) +

∑
u∈ch(v),u6=ui

S−0,1(u)}.

Minimum of M+
1 and M ′+1 is the best value for m+

1 (v). So:

m+
1 (v) = Min{M+

1 ,M
′+
1 }.

Calculating m+
2 (v) when v is not a pre-pendent:

In this case, v is black and it is dominated twice, so one of the following cases can occurs:

• There exist at least one vertex ui ∈ ch(v) such that |ui| = |ch(ui)| = 1. In this case, vertex in block ui is
black, its child is black and it is not dominated. So we have:

M+
2 = 1 +Minui∈ch(v),|ui|=|ch(ui)|=1{m+

0 (ch(ui))}+
∑

u∈ch(v),u6=ui

S−0,1(u).

If there is not any node ui ∈ ch(v) such that |ui| = |ch(ui)| = 1, then M+
2 =∞.

• There exist at least one vertex ui ∈ ch(v) such that |ui| = 0 and |ch(ui)| = 2. In this case, both children of
ch(ui) are black and it is not dominated. So we have:

M ′+2 = Minui∈ch(v),|ui|=0,|ch(ui)|=2{m+
0 (ch(ui))}+

∑
u∈ch(v),u6=ui

S−0,1(u).

If there is not any node ui ∈ ch(v) such that |ui| = |ch(ui)| = 1, then M ′+2 =∞.
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• For exactly two block ui, uj ∈ ch(v), one vertex is black, so all children of ch(ui) and ch(uj) should be white
and they are not dominated. For the other block u ∈ ch(v), all child must be white and they are dominated
at most once. We have:

M
′′+
2 = 2 +Minui,uj∈ch(v){S

−
0 (ui) + S−0 (uj) +

∑
u∈ch(v),u 6=ui,uj

S−0,1(u)}.

• For exactly one block ui ∈ ch(v), one vertex is black, so all children of ch(ui) should be white and they are
not dominated. In addition, for exactly one block uj ∈ ch(v), exactly one child is black and dominated at
most once and the other child is white and not dominated. Also, all children other child u ∈ ch(v) should be
white and they are dominated at most once.. We have:

M
′′′+
2 = 1 +Minui,uj∈ch(v){S

−
0 (ui) + S+

0 (uj) +
∑

u∈ch(v),u 6=ui,uj

S−0,1(u)}.

• For exactly two blocks ui, uj ∈ ch(v), exactly one child is black and dominated at most once and the other
child is white and not dominated. Also, all children other child u ∈ ch(v) should be white and they are
dominated at most once.. We have:

M
′′′′+
2 = Minui,uj∈ch(v){S

−
0 (ui) + S−0 (uj) +

∑
u∈ch(v),u6=ui,uj

S−0,1(u)}.

Minimum of M
′+
2 ,M

′′+
2 ,M

′′′+
2 and M

′′′′+
2 is the best value for m+

1 (v). So:

m+
1 (v) = Min{M

′+
2 ,M

′′+
2 ,M

′′′+
2 ,M

′′′′+
2 }.

Calculating m−0 (v) when v is not a pre-pendent
In this case, v is white and none of the child of v and ch(v) are not black. If v has a child like u that is a none

empty block node, then vertices of u can not dominated by any vertices because v or ch(u) can only dominate u.
So, m−0 (v) =∞ otherwise we have:

m−1 (v) =
∑

u∈ch(v)

S−1,2(u).

Calculating m−1 [v] when v is not a pre-pendent
In this case, v is white and exactly one of the child of v or ch(v) are black.

• The node v has at least two children like u1 and u2 that are none empty block node. So vertices of u1 or
vertices of u2 can not dominated and m−1 (v) =∞.

• The node v has only one none empty child like u1 and the other children are empty. So two cases appear:

1. One of the vertex of block node u1 is black and all of children of u1 are white and are dominated at most
once.

2. All vertices of block node u1 are white, exactly one child vi of u1 is black, the other are white. Moreover,
vi is dominated once or twice and white siblings of vi are dominated at most once.

And we have:

m−1 (v) = Min{1 + S−0,1(u1) +
∑

u∈ch(v),u6=u1

S−1,2(u), S+
0,1(u) +

∑
u∈ch(v),u6=u1

S−1,2(u)}

• All children of v are empty. So, among all children of v, there is exactly one node ui such that ui has only a
black child the other is white. In other child u 6= ui, all nodes of ch(u) should be white and we have:

m−1 (v) = Minui∈ch(v){S
+
0,1(ui) +

∑
u∈ch(v),u6=ui

S−1,2(u)}

All children of v are empty. So, from exactly one child ui of v, one of the children is black and the others are
white. In other child u 6= ui, all nodes of ch(u) should be white and we have:

m−1 (v) = Minui∈ch(v){S
+
0,1(ui) +

∑
u∈ch(v),u6=ui

S−1,2(u)}
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Calculating m−2 [v] when v is not a pre-pendent
In the last cases, we consider v is white and exactly two children of v or ch(v) are black.

• The node v has more than two none empty children, m−2 [v] =∞.

• The node v has only two none empty children like u1 and u2 and the other children are empty. So, for u1, u2
and the other vertices one of the following cases appears:

1. One of the vertex of block nodes u1 and u2 are black, all of children of them are white and are dominated
at most once.

2. One of the vertex of block node u1 is black, all of children of it are white and are dominated at most
once. Moreover, all of the vertices of block node u2 are white, one of its child is black, the others are
white and dominated at most once. (u1 and u2 can replace.)

3. All of the vertices of block node u1, u2 are white, one of its child is black, the others are white and
dominated at most once.

So we have:

m−2 (v) = Min{2 + S−0,1(u1) + S−0,1(u2) +
∑

u∈ch(v),u 6=u1,u2

S−1,2,

1 + S+
0,1(u1) + S−0,1(u2) +

∑
u∈ch(v),u 6=u1,u2

S−1,2,

1 + S+
0,1(u2) + S−0,1(u1) +

∑
u∈ch(v),u 6=u1,u2

S−1,2,

S+
0,1(u1) + S+

0,1(u2) +
∑

u∈ch(v),u6=u1,u2

S−1,2}

• The node v has only one none empty child u1. So, one of the following cases occurs for u1:

1. Two children of u1 are black and the others are white and not dominated at most once.

2. One vertex of block node u1 and one of its child are black and the other children of u1 are white and not
dominated.

3. One vertex of block node u1 is black and all of children of u1 are white and are dominated at most once.

4. All vertices of block node u1 are withe, one of its child are black and the other children of u1 are white
and not dominated.

For other child u of ch(v), there are exactly one node ui such that one child of it is black and the others are
white. Obviously, all child of other siblings ui are white. So we have:

m−2 (v) = Min{S∗(u1) +
∑

u∈ch(v),u 6=u1

S−1,2(u1),

1 + S+
0 (u1) +

∑
u∈ch(v),u 6=u1

S−1,2(u1),

1 + S−0,1(u1) +Minui∈ch(v),ui 6=u1
{S+

0,1(ui) +
∑

u∈ch(v),u6=ui,u1

S−1,2(u)},

S+
0,1(u1) +Minui∈ch(v),ui 6=u1

{S+
0,1(ui) +

∑
u∈ch(v),u6=ui,u1

S−1,2(u)}}.

• All children of v are empty. So, from exactly two children ui, uj of v, one of the children is black and the
others are white. In other child u 6= ui, uj , all nodes of ch(u) should be white and we have:

m−2 (v) = Minui,uj∈ch(v){S
+
0,1(ui) + S+

0,1(uj) +
∑

u∈ch(v),u6=ui,uj

S−1,2(u)}
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2.5. Final state:

Let r be the root of refined cut tree T , r can be correspond to a cut vertex of G or a block of it. Depend on
type of r one of the following cases appear:

1. The root r of T is a cut vertex of G.
Since for i = 0, 1, 2 we compute m+

i [v] and m−i [v] on a node of T that its corresponding vertex in G is a cut
vertex, so we must choose best set among computed set of root r. Note that r should be black or white and
should be dominated by one or two vertices. It means that:

M = Min{m+
1 (r),m+

2 (r),m−1 (r),m−2 (r)}.

2. The root r of T is corresponding to a block of G.
Since, we computed m+[v],m−0 [v],m−1 [v] and m−2 [v] for all vertices v ∈ ch(r). Based on the number of vertices
in block r and the number of its child, one of the following cases appear:

(a) |r| = 0, so we have:
M = Min{S−1,2(r), S+

0,1(r), S∗(r)}.

(b) |r| > 0, so we have::

M = Min{1 + S+
0 (r), 1 + S−0,1(r), S+

0,1(r), S−1,2(r), S∗(r)}.

Theorem 2.1. The value M computed by Algorithm 1 for the block graph G is size of the smallest total [1, 2]-set
of G and is computed in linear-time.

Proof. The number of nodes in the refined cut tree T corresponding to block graph G is linear based on order
of G, i.e. n. It is obvious that the algorithm traverses T once and is computed in linear-time O(n).

�
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