A linear-time algorithm to compute total $[1, 2]$-domination number of block graphs

Pouyeh Sharifania,c, Mohammadreza Hooshmandaslb,c, Saeid Alikhanid

aInstitute for Research in Fundamental Sciences (IPM), Tehran, Iran.
bDepartment of Computer Science, University of Mohaghegh Ardabili, Ardabil, Iran.
cDepartment of Computer Science, Yazd University, Yazd, Iran.
dDepartment of Mathematics, Yazd University, Yazd, Iran.

ABSTRACT: Let $G = (V, E)$ be a simple graph without isolated vertices. A set $D \subseteq V$ is a total $[1, 2]$-dominating set if for every vertex $v \in V$, $1 \leq |N(v) \cap D| \leq 2$. The total $[1, 2]$-domination problem is to determine the total $[1, 2]$-domination number $\gamma_{t[1, 2]}(G)$, which is the minimum cardinality of a total $[1, 2]$-dominating set for a graph G. In this paper, we present a linear-time algorithm to compute $\gamma_{t[1, 2]}(G)$ for a block graph G.

1. Introduction

All graphs considered here are simple, i.e., finite, undirected, and loop-less. For other graph theory terminology and notation not given here we refer to [10].

Let $G = (V, E)$ be a graph. The open neighborhood of a vertex $v \in V$ is the set of all vertices adjacent to v and is denoted by $N(v)$. Similarly, the closed neighborhood of a vertex v is $N[v] = N(v) \cup \{v\}$. In connected graph G, a vertex is called a cut-vertex of G if its removal produces a disconnected graph. A block of a graph G is a maximal connected induced subgraph of G that has no cut-vertex. A block graph is a graph whose blocks are complete graphs. A subset $D \subseteq V$ is called a dominating set, if every vertex in V is contained in D or has a neighbor in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. A total dominating set of a simple graph $G = (V, E)$ without isolated vertex, is a set $S \subseteq V$ such that every vertex is adjacent to a vertex in S. The minimum cardinality of a total dominating set is denoted by $\gamma_t(G)$. The minimum dominating set problem is an NP-hard problem [8, 7, 9].

A set $S \subseteq V$ is called a $[1, 2]$-set of G if for each $v \in V - S$, v is adjacent to at least one but not more than two vertices in S. The total $[1, 2]$-set is a set $S \subseteq V$ such that for each $v \in V$, $1 \leq |N(v) \cap S| \leq 2$. The total $[1, 2]$-domination number, denoted by $\gamma_{t[1, 2]}(G)$, is the minimum cardinality of a total $[1, 2]$-dominating set for a graph G. We note that in the problem total $[1, 2]$-dominating set, there are some graphs without any total $[1, 2]$-dominating sets, such as the graphs with isolated vertices.

*Corresponding author.
E-mail addresses: pouyeh.sharifani@gmail.com, hooshmandasl@uma.ac.ir, hooshmandasl@yazd.ac.ir, alikhani@yazd.ac.ir

AMS Subject classifications: 05C15, 20D60
The concept of \([1,2]-\text{set and its variants such as total }[1,2]-\text{set and independent }[1,2]-\text{set are well studied by Chellali et al. in }[3,4]\. In [4], several open problems were proposed about \([1,2]-\text{set and total }[1,2]-\text{set. Some of these problems were solved in }[6,2,5]\. In this paper we provide a linear-time algorithm for finding the minimum cardinality of a total \([1,2]-\text{dominating set for a block graph }G\).

2. Algorithm for computing total \([1,2]-\text{domination number}

Our algorithm relies on a tree-like decomposition structure, which is called a refined cut-tree of a block graph. Let \(G\) be a block graph with \(t\) blocks \(B_1, B_2, \cdots, B_t\) and \(q\) cut-vertices \(v_1, v_2, \cdots, v_q\). The cut-tree of \(G\), denoted by \(T^C(V^C, E^C)\), is defined as \(V^C = \{B_1, B_2, \cdots, B_t, v_1, v_2, \cdots, v_q\}\) and \(E^C = \{(B_i, v_j) \mid v_j \in B_i, 1 \leq i \leq t, 1 \leq j \leq q\}\). The cut-tree of a block graph can be constructed in linear-time by the depth-first search algorithm [1]. For any block \(B_i\) of \(G\), the block-vertex \(B_i\) is defined as \(B_i = \{v \in B_i \mid v\) is not a cut-vertex\}, where \(1 \leq i \leq t\). We can refine the cut-tree \(T^C(V^C, E^C)\) as \(V^C = \{\tilde{B}_i, \cdots, \tilde{B}_t, v_1, \cdots, v_q\}\) and \(E^C = \{\tilde{(B}_i, v_j) \mid v_j \in \tilde{B}_i, 1 \leq i \leq t, 1 \leq j \leq q\}\). We notice that in the refined cut-tree of a block graph, a block-vertex can be empty.

A block graph \(G\) with 11 blocks \(B_1, B_2, \cdots, B_{11}\) and the corresponding refined cut-tree of \(G\) are shown in Figure 1.

\[\text{Figure 1: Block graph }G\text{ and the corresponding cut-tree of }G\]

To compute \(\gamma_{[1,2]}(G)\), we traverse \(T\) in the post order and during traversing, we compute \(m_i^-[v], m_i^+[v], S_0^- (u), S_{0,1}^- (u), S_{1,2}^- (u), S_0^+(u), S_{0,1}^+(u)\) and \(S^+(u)\) where \(i = 0, 1, 2, v\) is cut-vertex and \(u \in V(T)\) is block node.

- \(B\) as the set of all block nodes of \(T\).
- \(C\) as the set of all cut-vertices of \(G\).
- \(T_v\) as the subtree of \(T\) rooted at \(v\).
- \(G[T_v]\) as the subgraph of \(G\) which corresponding to \(T_v\).
- For the smallest \([1,2]-\text{set }S\text{ of }T_v\), every vertex in \(S\) is called \((S,v)\)-black, and \((S,v)\)-white otherwise. For simplicity, we use the terms black and white instead of \((S,v)\)-black and \((S,v)\)-white, respectively.
- For each block node \(u \in V(T)\) and \(v \in ch(u)\), depended on the color of \(v\) and the number of vertices which dominate \(v\), we define variables as bellow:
 - For \(u \in V(T), S_0^- (u)\) is the size of the smallest \([1,2]-\text{set of }G[T_v]\) that all children of \(u\) are white and they are not dominated.
 - For \(u \in V(T), S_{0,1}^- (u)\) is the size of the smallest \([1,2]-\text{set of }G[T_v]\) that all children of \(u\) are white and they are dominated at most once.
 - For \(u \in V(T), S_{1,2}^- (u)\) is the size of the smallest \([1,2]-\text{set of }G[T_v]\) that all children of \(u\) are white and they are dominated once or twice.
 - For \(u \in V(T), S_0^+(u)\) is the size of the smallest \([1,2]-\text{set of }G[T_v]\) that one child of \(u\) is black and it is dominated at most once. Moreover the other children of \(u\) are white and they are not dominated.
For $u \in V(T)$, $S^+(u)$ is the size of the smallest $[1, 2]$-set of $G[T_u]$ that one vertex of $ch(u)$ is black and it is dominated once or twice. Moreover the other children of u are white and they are dominated at most once.

For $u \in V(T)$, $S^*(u)$ is the size of the smallest $[1, 2]$-set of $G[T_u]$ that two black vertices of $ch(u)$ are dominated at most once. Moreover the other children of u are white and they are not dominated.

- For cut-vertex $v \in V(T)$, $m^+_i[v]$ is the size of the smallest $[1, 2]$-set of $G[T_v]$ that v is white and dominated by i other vertices of $G[T_v]$ for $i = 0, 1, 2$.

- For cut-vertex $v \in V(T)$, $m^-_i[v]$ is the size of the smallest $[1, 2]$-set of $G[T_v]$ that v is black and dominated by i other vertices of $G[T_v]$ for $i = 0, 1, 2$.

Now, we use a refined cut tree T of a given block graph G and dynamic programming method to compute total $[1, 2]$-domination number of G. The algorithm contains three step, Initializing step, Updating step and final step.

2.1. Initializing step:

Obviously, every leaf of cut-tree T is a block node and it is not empty. Since variables for block nodes are based on color of its child, so in first step we begin our algorithm from pre-pendent node v of T, that is a cut vertex of G. We initialize $m^+_i[v]$ and $m^-_i[v]$ for $i = 0, 1, 2$ and pre-pendent node v of T as bellow:

\[
\begin{align*}
 m^+_i[v] &= \begin{cases}
 1 & \text{if } |ch(v)| = 1, \\
 \infty & \text{Otherwise,}
 \end{cases} \\
 m^-_i[v] &= \begin{cases}
 2 & \text{if } |ch(v)| = 2, \\
 \infty & \text{Otherwise.}
 \end{cases}
\end{align*}
\]

2.2. Updating step:

In the post order traversal of T, for each non pre-pendent node, based on type of them which are a block or cut, we can consider the following cases:

2.3. Updating step for block nodes of T:

In this step, we define variables $S^0_0(v), S^0_1(v), S^1_0(v), S^1_2(v), S^0_{0,1}(u), S^1_{0,1}(u)$ and $S^*(u)$ for block node u of T. These variables depend on the number of nodes in $ch(u)$.

Calculating $S^0_0(v)$:

All children of u are white and they are not dominated. So:

\[
S^0_0(u) = \sum_{v \in ch(u)} m^0_0(v).
\]

Calculating $S^0_{0,1}(u)$:

All children of u are white and they are dominated at most once. So:

\[
S^0_{0,1}(u) = \sum_{v \in ch(u)} \min \{m^0_0(v), m^1_0(v)\}.
\]

Calculating $S^1_1(u)$:

All children of u are white and they are dominated at most once. So:

\[
S^1_2(u) = \sum_{v \in ch(u)} \min \{m^1_1(v), m^2_1(v)\}.
\]

Calculating $S^0_{0,1}(u)$:

One child $v_i \in ch(u)$ is black, it is dominated at most once and the other children of u are white and they are not dominated. So:

\[
S^0_{0,1}(u) = \min_{v_i \in ch(u)} \{\min \{m^0_0(v_i), m^1_0(v_i)\} + \sum_{v \in ch(u), v \neq v_i} m^0_0(v)\}.
\]

Calculating $S^+_{0,1}(u)$:
One child \(v_i \in ch(u) \) is black and it is dominated once or twice. Moreover, the other children of \(u \) are white and they are dominated at most once. So:

\[
S^+_0(u) = \min_{v_i \in ch(u)} \{ \min \{ m_1^+(v_i), m_2^+(v_i) \} + \sum_{v \in ch(u), v \neq v_i} \min \{ m_0^-(v_i), m_1^-(v_i) \} \}.
\]

Calculating \(S^+(u) \):

Two vertices of \(v_i, v' \in ch(u) \) are black and they are dominated at most once. Moreover, the other children of \(u \) are white and they are not dominated. So:

\[
S^+(u) = \min_{v_i, v' \in ch(u)} \{ \min \{ m_0^+(v_i), m_1^+(v_i) \} + \min \{ m_0^+(v'_i), m_1^+(v'_i) \} + \sum_{v \in ch(u), v \neq v_i, v'} m_0^-(v_i) \}.
\]

2.4. **Updating step for cut vertex of** \(T \):

In this step, for \(i = 0, 1, 2 \) we define variables \(m_0^i(v) \) and \(m_1^i(v) \) for cut nodes \(v \) of \(T \).

Calculating \(m_0^i(v) \) when \(v \) is not a pre-pendent:

In this case, \(v \) is black so all the children of \(v \) and all children of \(ch(v) \) already have a black neighbor. Since \(v \) should not dominate by any vertices, So, all child \(u \in ch(v) \) must be white and they are dominated at most once.

\[
m_0^i(v) = 1 + \sum_{u \in ch(v)} S^{−}_0(u).
\]

Calculating \(m_1^i(v) \) when \(v \) is not a pre-pendent:

In this case, \(v \) is black and it is dominated once, so one of the following cases can occurs:

- In this case, exactly one vertex of block \(u_i \in ch(v) \) is black and other children of \(u_i \) have color white and are not dominated. For the other block \(u \in ch(v) \), all child are white and they are dominated at most once. We have:

\[
M_1^+ = 1 + \min_{u_i \in ch(v), \{u_i\} \neq 0} \{ S^{−}_0(u_i) + \sum_{u \in ch(v), u \neq u_i} S^{−}_0(u) \}.
\]

- For exactly one block \(u_i \in ch(v) \), one nodes of \(ch(u_i) \) and the black vertex dominate at most once. The other vertices of \(ch(u_i) \) are white and they are not dominated. In addition, for the other block \(u \in ch(v) \), all of their children are white and they are dominated at most once. We have:

\[
M_1^+ = \min_{u_i \in ch(v)} \{ S^+_0(u_i) + \sum_{u \in ch(v), u \neq u_i} S^{−}_0(u) \}.
\]

Minimum of \(M_1^+ \) and \(M_1^+ \) is the best value for \(m_1^+(v) \). So:

\[
m_1^+(v) = \min \{ M_1^+, M_1^+ \}.
\]

Calculating \(m_2^i(v) \) when \(v \) is not a pre-pendent:

In this case, \(v \) is black and it is dominated twice, so one of the following cases can occurs:

- There exist at least one vertex \(u_i \in ch(v) \) such that \(|u_i| = |ch(u_i)| = 1 \). In this case, vertex in block \(u_i \) is black, its child is black and it is not dominated. So we have:

\[
M_2^+ = 1 + \min_{u_i \in ch(v), |u_i|=|ch(u_i)|=1} \{ m_0^+(ch(u_i)) \} + \sum_{u \in ch(v), u \neq u_i} S^{−}_0(u).
\]

If there is not any node \(u_i \in ch(v) \) such that \(|u_i| = |ch(u_i)| = 1 \), then \(M_2^+ = \infty \).

- There exist at least one vertex \(u_i \in ch(v) \) such that \(|u_i| = 0 \) and \(|ch(u_i)| = 2 \). In this case, both children of \(ch(u_i) \) are black and it is not dominated. So we have:

\[
M_2^+ = \min_{u_i \in ch(v), |u_i|=0, |ch(u_i)|=2} \{ m_0^+(ch(u_i)) \} + \sum_{u \in ch(v), u \neq u_i} S^{−}_0(u).
\]

If there is not any node \(u_i \in ch(v) \) such that \(|u_i| = |ch(u_i)| = 1 \), then \(M_2^+ = \infty \).
• For exactly two blocks \(u_i, u_j \in ch(v) \), one vertex is black, so all children of \(ch(u_i) \) and \(ch(u_j) \) should be white and they are not dominated. For the other block \(u \in ch(v) \), all child must be white and they are dominated at most once. We have:

\[
M_2^{''''} = 2 + \min_{u_i, u_j \in ch(v)} \{ S_0^{-}(u_i) + S_0^{-}(u_j) + \sum_{u \in ch(v), u \neq u_i, u_j} S_0^{''}(u) \}.
\]

• For exactly one block \(u_i \in ch(v) \), one vertex is black, so all children of \(ch(u_i) \) should be white and they are not dominated. In addition, for exactly one block \(u_j \in ch(v) \), exactly one child is black and dominated at most once and the other child is white and not dominated. Also, all children other child \(u \in ch(v) \) should be white and they are dominated at most once.. We have:

\[
M_2^{''''} = 1 + \min_{u_i, u_j \in ch(v)} \{ S_0^{-}(u_i) + S_0^{''}(u_j) + \sum_{u \in ch(v), u \neq u_i, u_j} S_0^{'''}(u) \}.
\]

• For exactly two blocks \(u_i, u_j \in ch(v) \), exactly one child is black and dominated at most once and the other child is white and not dominated. Also, all children other child \(u \in ch(v) \) should be white and they are dominated at most once.. We have:

\[
M_2^{''''} = \min_{u_i, u_j \in ch(v)} \{ S_0^{-}(u_i) + S_0^{-}(u_j) + \sum_{u \in ch(v), u \neq u_i, u_j} S_0^{''''}(u) \}.
\]

Minimum of \(M_2^{''''}, M_2^{''''}, M_2^{''''}, M_2^{''''} \) and \(M_2^{''''} \) is the best value for \(m_1^{+}(v) \). So:

\[
m_1^{+}(v) = \min\{M_2^{''''}, M_2^{''''}, M_2^{''''}, M_2^{''''}\}.
\]

Calculating \(m_0^{-}(v) \) when \(v \) is not a pre-pendent

In this case, \(v \) is white and none of the child of \(v \) and \(ch(v) \) are not black. If \(v \) has a child like \(u \) that is a none empty block node, then vertices of \(u \) can not dominated by any vertices because \(v \) or \(ch(u) \) can only dominate \(u \). So, \(m_0^{-}(v) = \infty \) otherwise we have:

\[
m_0^{-}(v) = \sum_{u \in ch(v)} S_1^{-}(u).
\]

Calculating \(m_1^{-}[v] \) when \(v \) is not a pre-pendent

In this case, \(v \) is white and exactly one of the child of \(v \) or \(ch(v) \) are black.

• The node \(v \) has at least two children like \(u_1 \) and \(u_2 \) that are none empty block node. So vertices of \(u_1 \) or vertices of \(u_2 \) can not dominated and \(m_1^{-}(v) = \infty \).

• The node \(v \) has only one none empty child like \(u_1 \) and the other children are empty. So two cases appear:

1. One of the vertex of block node \(u_1 \) is black and all of children of \(u_1 \) are white and are dominated at most once.
2. All vertices of block node \(u_1 \) are white, exactly one child \(v_i \) of \(u_1 \) is black, the other are white. Moreover, \(v_i \) is dominated once or twice and white siblings of \(v_i \) are dominated at most once.

And we have:

\[
m_1^{-}(v) = \min\{1 + S_0^{''''}(u_1) + \sum_{u \in ch(v), u \neq u_1} S_0^{''}(u), S_0^{'''}(u_1) + \sum_{u \in ch(v), u \neq u_1} S_0^{''''}(u)\}
\]

• All children of \(v \) are empty. So, among all children of \(v \), there is exactly one node \(u_i \) such that \(u_i \) has only a black child the other is white. In other child \(u \neq u_i \), all nodes of \(ch(u) \) should be white and we have:

\[
m_1^{-}(v) = \min_{u_i \in ch(v)} \{ S_0^{''''}(u_i) + \sum_{u \in ch(v), u \neq u_i} S_0^{''''}(u) \}
\]

All children of \(v \) are empty. So, from exactly one child \(u_i \) of \(v \), one of the children is black and the others are white. In other child \(u \neq u_i \), all nodes of \(ch(u) \) should be white and we have:

\[
m_1^{-}(v) = \min_{u_i \in ch(v)} \{ S_0^{''''}(u_i) + \sum_{u \in ch(v), u \neq u_i} S_0^{''''}(u) \}
\]
Calculating $m_2^- [v]$ when v is not a pre-pendent
In the last cases, we consider v is white and exactly two children of v or $ch(v)$ are black.

- The node v has more than two none empty children, $m_2^- [v] = \infty$.
- The node v has only two none empty children like u_1 and u_2 and the other children are empty. So, for u_1, u_2 and the other vertices one of the following cases appears:
 1. One of the vertex of block nodes u_1 and u_2 are black, all of children of them are white and are dominated at most once.
 2. One of the vertex of block node u_1 is black, all of children of it are white and are dominated at most once. Moreover, all of the vertices of block node u_2 are white, one of its child is black, the others are white and dominated at most once. (u_1 and u_2 can replace.)
 3. All of the vertices of block node u_1, u_2 are white, one of its child is black, the others are white and dominated at most once.

So we have:

$$m_2^-(v) = \text{Min}(2 + S^+_{0,1}(u_1) + S^-_{0,1}(u_2) + \sum_{u \in \text{ch}(v), u \neq u_1, u_2} S^-_{1,2},$$

$$1 + S^+_{0,1}(u_1) + S^-_{0,1}(u_2) + \sum_{u \in \text{ch}(v), u \neq u_1, u_2} S^-_{1,2},$$

$$1 + S^+_{0,1}(u_2) + S^-_{0,1}(u_1) + \sum_{u \in \text{ch}(v), u \neq u_1, u_2} S^-_{1,2},$$

$$S^+_{0,1}(u_1) + S^+_{0,1}(u_2) + \sum_{u \in \text{ch}(v), u \neq u_1, u_2} S^-_{1,2}.$$

- The node v has only one none empty child u_1. So, one of the following cases occurs for u_1:
 1. Two children of u_1 are black and the others are white and not dominated at most once.
 2. One vertex of block node u_1 and one of its children are black and the other children of u_1 are white and not dominated.
 3. One vertex of block node u_1 is black and all of children of u_1 are white and dominated at most once.
 4. All vertices of block node u_1 are white, one of its children are black and the other children of u_1 are white and not dominated.

For other child u of ch(v), there are exactly one node u_i such that one child of it is black and the others are white. Obviously, all child of other siblings u_i are white. So we have:

$$m_2^-(v) = \text{Min}(S^*(u_1) + \sum_{u \in \text{ch}(v), u \neq u_1} S^-_{1,2}(u_1),$$

$$1 + S^+_{0,1}(u_1) + \sum_{u \in \text{ch}(v), u \neq u_1} S^-_{1,2}(u_1),$$

$$1 + S^+_{0,1}(u_1) + \text{Min}_{u_i \in \text{ch}(v), u_i \neq u_1} \{ S^+_{0,1}(u_i) + \sum_{u \in \text{ch}(v), u \neq u_i, u_1} S^-_{1,2}(u) \},$$

$$S^+_{0,1}(u_1) + \text{Min}_{u_i \in \text{ch}(v), u_i \neq u_1} \{ S^+_{0,1}(u_i) + \sum_{u \in \text{ch}(v), u \neq u_i, u_1} S^-_{1,2}(u) \}.$$

- All children of v are empty. So, from exactly two children u_i, u_j of v, one of the children is black and the others are white. In other child $u \neq u_i, u_j$, all nodes of $ch(u)$ should be white and we have:

$$m_2^-(v) = \text{Min}_{u_i, u_j \in \text{ch}(v)} \{ S^+_{0,1}(u_i) + S^+_{0,1}(u_j) + \sum_{u \in \text{ch}(v), u \neq u_i, u_j} S^-_{1,2}(u) \}.$$
2.5. Final state:

Let \(r \) be the root of refined cut tree \(T \), \(r \) can be correspond to a cut vertex of \(G \) or a block of it. Depend on type of \(r \) one of the following cases appear:

1. The root \(r \) of \(T \) is a cut vertex of \(G \).

Since for \(i = 0, 1, 2 \) we compute \(m_i^+[v] \) and \(m_i^-[v] \) on a node of \(T \) that its corresponding vertex in \(G \) is a cut vertex, so we must choose best set among computed set of root \(r \). Note that \(r \) should be black or white and should be dominated by one or two vertices. It means that:

\[
M = \text{Min}\{m_1^+(r), m_2^+(r), m_1^-(r), m_2^-(r)\}.
\]

2. The root \(r \) of \(T \) is corresponding to a block of \(G \).

Since, we computed \(m^+ [v], m_0^+ [v], m_1^+ [v] \) and \(m_2^+ [v] \) for all vertices \(v \in ch(r) \). Based on the number of vertices in block \(r \) and the number of its child, one of the following cases appear:

(a) \(|r| = 0 \), so we have:

\[
M = \text{Min}\{S_{1,2}^-(r), S_{0,1}^+(r), S^*(r)\}.
\]

(b) \(|r| > 0 \), so we have:

\[
M = \text{Min}\{1 + S_0^+(r), 1 + S_{0,1}^-(r), S_{0,1}^+(r), S_{1,2}^-(r), S^*(r)\}.
\]

Theorem 2.1. The value \(M \) computed by Algorithm 1 for the block graph \(G \) is size of the smallest total \([1, 2]\)-set of \(G \) and is computed in linear-time.

Proof. The number of nodes in the refined cut tree \(T \) corresponding to block graph \(G \) is linear based on order of \(G \), i.e. \(n \). It is obvious that the algorithm traverses \(T \) once and is computed in linear-time \(O(n) \).

\[\square\]

Algorithm 1 Total \([1, 2]\)-Dominating Set

Input: A refined cut tree \(T \) of block graph \(G \).

1. **procedure Initializing step**

2. **procedure Updating step:** Depending on the type of non-pre-pendant nodes in the post order traversal of \(T \), one of the following procedures is selected:

3. **procedure Updating step for block nodes of \(T \):**

 Calculating \(S_0^- (u), S_0^+ (u), S_{0,1}^- (u), S_{1,2}^- (u), S_0^+ (u), S_{0,1}^+(u) \) and \(S^*(u) \).

4. **procedure Updating step for cut vertex of \(T \):**

 Calculating \(m_0^+ (v), m_1^+ (v), m_0^- (v), m_1^- (v) \) and \(m_2^- [v] \) when \(v \) is not a pre-pendant.

7. **procedure Final State**

8. if the root \(r \) of \(T \) is a cut vertex of \(G \) then \(M = \text{Min}\{m_1^+(r), m_2^+(r), m_1^-(r), m_2^-(r)\} \).

9. if the root \(r \) is a block and \(|r| = 0 \) then \(M = \text{Min}\{S_{1,2}^-(r), S_{0,1}^+(r), S^*(r)\} \).

10. if the root \(r \) is a block and \(|r| > 0 \) then

 \[
 M = \text{Min}\{1 + S_0^+(r), 1 + S_{0,1}^-(r), S_{0,1}^+(r), S_{1,2}^-(r), S^*(r)\}.
 \]

Output: Size of minimum total \([1, 2]\)-set of \(G \).

References

Please cite this article using:
Pouyeh Sharifani, Mohammadreza Hooshmandasl, Saeid Alikhani, A linear-time algorithm to compute total [1, 2]-domination number of block graphs, AUT J. Math. Com., 1(2) (2020) 263-270
DOI: 10.22060/ajmc.2020.18444.1035