

Original Article

A linear-time algorithm to compute total [1, 2]-domination number of block graphs

Pouyeh Sharifani ${ }^{\text {a,c }}$, Mohammadreza Hooshmandasl ${ }^{* b, c}$, Saeid Alikhani ${ }^{\text {d }}$
${ }^{a}$ Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
${ }^{b}$ Department of Computer Science, University of Mohaghegh Ardabili, Ardabil, Iran.
${ }^{c}$ Department of Computer Science, Yazd University, Yazd, Iran.
${ }^{d}$ Department of Mathematics, Yazd University, Yazd, Iran.

Abstract

Let $G=(V, E)$ be a simple graph without isolated vertices. A set $D \subset V$ is a total [1,2]-dominating set if for every vertex $v \in V, 1 \leq|N(v) \cap D| \leq 2$. The total [1,2]-domination problem is to determine the total [1, 2]-domination number $\gamma_{t[1,2]}(G)$, which is the minimum cardinality of a total [1,2]-dominating set for a graph G. In this paper, we present a linear-time algorithm to compute $\gamma_{t[1,2]}(G)$ for a block graph G.

Review History:

Received:19 May 2020
Accepted:14 August 2020
Available Online:01 September 2020

Keywords:

Total [1, 2]-set
Dominating set
Block graph

AMS Subject Classification (2010):

05C15, 20D60

1. Introduction

All graphs considered here are simple, i.e., finite, undirected, and loop-less. For other graph theory terminology and notation not given here we refer to [10].

Let $G=(V, E)$ be a graph. The open neighborhood of a vertex $v \in V$ is the set of all vertices adjacent to v and is denoted by $N(v)$. Similarly, the closed neighborhood of a vertex v is $N[v]=N(v) \cup\{v\}$. In connected graph G, a vertex is called a cut-vertex of G if its removal produses a disconnected graph. A block of a graph G is a maximal connected induced subgraph of G that has no cut-vertex. A block graph is a graph whose blocks are complete graphs. A subset $D \subseteq V$ is called a dominating set, if every vertex in V is contained in D or has a neighbor in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. A total dominating set of a simple graph $G=(V, E)$ without isolated vertex, is a set $S \subseteq V$ such that every vertex is adjacent to a vertex in S. The minimum cardinality of a total dominating set is denoted by $\gamma_{t}(G)$. The minimum dominating set problem is an $N P$-hard problem [7, 8, 9].

A set $S \subseteq V$ is called a $[1,2]$-set of G if for each $v \in V-S, v$ is adjacent to at least one but not more than two vertices in S. The total [1, 2]-set is a set $S \subseteq V$ such that for each $v \in V, 1 \leq|N(v) \cap S| \leq 2$. The total [1, 2]domination number, denoted by $\gamma_{t[1,2]}(G)$, is the minimum cardinality of a total [1, 2]-dominating set for a graph G. We note that in the problem total [1, 2]-dominating set, there are some graphs without any total [1, 2]-dominating sets, such as the graphs with isolated vertices.

[^0]The concept of [1, 2]-set and its variants such as total [1, 2]-set and independent [1, 2]-set are well studied by Chellali et al. in [3, 4]. In [4], several open problems were proposed about [1, 2]-set and total [1, 2]-set. Some of these problems were solved in $[6,2,5]$. In this paper we provide a linear-time algorithm for finding the minimum cardinality of a total [1,2]-dominating set for a block graph G.

2. Algorithm for computing total [1, 2]-domination number

Our algorithm relies on a tree-like decomposition structure, which is called a refined cut-tree of a block graph.
Let G be a block graph with t blocks $B_{1}, B_{2}, \cdots, B_{t}$ and q cut-vertices $v_{1}, v_{2}, \cdots, v_{q}$. The cut-tree of G, denoted by $T^{C}\left(V^{C}, E^{C}\right)$, is defined as $V^{C}=\left\{B_{1}, B_{2}, \cdots, B_{t}, v_{1}, v_{2}, \cdots, v_{q}\right\}$ and $E^{C}=\left\{\left(B_{i}, v_{j}\right) \mid v_{j} \in B_{i}, 1 \leq\right.$ $i \leq h, 1 \leq j \leq q\}$. The cut-tree of a block graph can be constructed in linear-time by the depth-first search algorithm [1]. For any block B_{i} of G, the block-vertex \tilde{B}_{i} is defined as $\tilde{B}_{i}=\left\{v \in B_{i} \mid v\right.$ is not a cut-vertex $\}$, where $1 \leq i \leq t$. We can refine the cut-tree $T^{C}\left(V^{C}, E^{C}\right)$ as $V^{C}=\left\{\tilde{B}_{1}, \cdots, \tilde{B}_{t}, v_{1}, \cdots, v_{q}\right\}$ and $E^{C}=\left\{\left(\tilde{B}_{i}, v_{j}\right) \mid v_{j} \in\right.$ $\left.B_{i}, 1 \leq i \leq t, 1 \leq j \leq q\right\}$. We notice that in the refined cut-tree of a block graph, a block-vertex can be empty.

A block graph G with 11 blocks $B_{1}, B_{2}, \cdots, B_{11}$ and the corresponding refined cut-tree of G are shown in Figure 1.

Figure 1: Block graph G and the corresponding cut-tree of G
To compute $\gamma_{[1,2]}(G)$, we traverse T in the post order and during traversing, we compute $m_{i}^{-}[v], m_{i}^{+}[v], S_{0}^{-}(u)$, $S_{0,1}^{-}(u), S_{1,2}^{-}(u), S_{0}^{+}(u), S_{0,1}^{+}(u)$ and $S^{*}(u)$ where $i=0,1,2, v$ is cut-vertex and $u \in V(T)$ is block node.

- B as the set of all block nodes of T.
- C as the set of all cut-vertices of G.
- T_{v} as the subtree of T rooted at v.
- $G\left[T_{v}\right]$ as the subgraph of G which corresponding to T_{v}.
- For the smallest $[1,2]$-set S of T_{v}, every vertex in S is called (S, v)-black, and (S, v)-white otherwise. For simplicity, we use the terms black and white instead of (S, v)-black and (S, v)-white, respectively.
- For each block node $u \in V(T)$ and $v \in c h(u)$, depended on the color of v and the number of vertices which dominate v, we define variables as bellow:
- For $u \in V(T), S_{0}^{-}(u)$ is the size of the smallest [1,2]-set of $G\left[T_{v}\right]$ that all children of u are white and they are not dominated.
- For $u \in V(T), S_{0,1}^{-}(u)$ is the size of the smallest [1, 2]-set of $G\left[T_{v}\right]$ that all children of u are white and they are dominated at most once.
- For $u \in V(T), S_{1,2}^{-}(u)$ is the size of the smallest $[1,2]$-set of $G\left[T_{v}\right]$ that all children of u are white and they are dominated once or twice.
- For $u \in V(T), S_{0}^{+}(u)$ is the size of the smallest $[1,2]$-set of $G\left[T_{v}\right]$ that one child of u is black and it is dominated at most once. Moreover the other children of u are white and they are not dominated.
- For $u \in V(T), S_{0,1}^{+}(u)$ is the size of the smallest $[1,2]$-set of $G\left[T_{v}\right]$ that one vertex of $\operatorname{ch}(u)$ is black and it is dominated once or twice. Moreover the other children of u are white and they are dominated at most once.
- For $u \in V(T), S^{*}(u)$ is the size of the smallest $[1,2]$-set of $G\left[T_{v}\right]$ that two black vertices of $c h(u)$ are dominated at most once. Moreover the other children of u are white and they are not dominated.
- For cut-vertex $v \in V(T), m_{i}^{-}[v]$ is the size of the smallest $[1,2]$-set of $G\left[T_{v}\right]$ that v is white and dominated by i other vertices of $G\left[T_{v}\right]$ for $i=0,1,2$.
- For cut-vertex $v \in V(T), m_{i}^{+}[v]$ is the size of the smallest $[1,2]$-set of $G\left[T_{v}\right]$ that v is black and dominated by i other vertices of $G\left[T_{v}\right]$ for $i=0,1,2$.

Now, we use a refined cut tree T of a given block graph G and dynamic programming method to compute total [1, 2]-domination number of G. The algorithm contains three step, Initializing step, Updating step and final step.

2.1. Initializing step:

Obviously, every leaf of cut-tree T is a block node and it is not empty. Since variables for block nodes are based on color of its child, so in first step we begin our algorithm from pre-pendent node v of T, that is a cut vertex of G. We initialize $m_{i}^{+}[v]$ and $m_{i}^{-}[v]$ for $i=0,1,2$ and pre-pendent node v of T as bellow:

$$
\begin{gathered}
m_{0}^{+}[v]=1, \quad m_{1}^{+}=2, \quad m_{2}^{+}=3, \quad m_{0}^{-}[v]=\infty \\
m_{1}^{-}[v]=\left\{\begin{array}{ll}
1 & \text { if }|\operatorname{ch}(v)|=1, \\
\infty & \text { Otherwise },
\end{array} \quad \text { and } \quad m_{2}^{-}[v]= \begin{cases}2 & \text { if }|\operatorname{ch}(v)|=2, \\
\infty & \text { Otherwise }\end{cases} \right.
\end{gathered}
$$

2.2. Updating step:

In the post order traversal of T, for each non pre-pendent node, based on type of them which are a block or cut, we can consider the following cases:

2.3. Updating step for block nodes of T :

In this step, we define variables $S_{0}^{-}(u), S_{0,1}^{-}(u), S_{1,2}^{-}(u), S_{0}^{+}(u), S_{0,1}^{+}(u)$ and $S^{*}(u)$ for block node u of T. These variables depend on the number of nodes in $\operatorname{ch}(u)$.
Calculating $S_{0}^{-}(u)$:
All children of u are white and they are not dominated. So:

$$
S_{0}^{-}(u)=\sum_{v \in c h(u)} m_{0}^{-}(v) .
$$

Calculating $S_{0,1}^{-}(u)$:

All children of u are white and they are dominated at most once. So:

$$
S_{0,1}^{-}(u)=\sum_{v \in \operatorname{ch}(u)} \operatorname{Min}\left\{m_{0}^{-}(v), m_{1}^{-}(v)\right\}
$$

Calculating $S_{1,2}^{-}(u)$:

All children of u are white and they are dominated at most once. So:

$$
S_{1,2}^{-}(u)=\sum_{v \in \operatorname{ch}(u)} \operatorname{Min}\left\{m_{1}^{-}(v), m_{2}^{-}(v)\right\}
$$

Calculating $S_{0}^{+}(u)$:
One child $v_{i} \in \operatorname{ch}(u)$ is black, it is dominated at most once and the other children of u are white and they are not dominated. So:

$$
S_{0}^{+}(u)=\operatorname{Min}_{v_{i} \in c h(u)}\left\{\operatorname{Min}\left\{m_{0}^{+}\left(v_{i}\right), m_{1}^{+}\left(v_{i}\right)\right\}+\sum_{v \in c h(u), v \neq v_{i}} m_{0}^{-}(v)\right\}
$$

Calculating $S_{0,1}^{+}(u)$:

One child $v_{i} \in \operatorname{ch}(u)$ is black and it is dominated once or twice. Moreover the other children of u are white and they are dominated at most once. So:

$$
S_{0,1}^{+}(u)=\operatorname{Min}_{v_{i} \in c h(u)}\left\{\operatorname{Min}\left\{m_{1}^{+}\left(v_{i}\right), m_{2}^{+}\left(v_{i}\right)\right\}+\sum_{v \in c h(u), v \neq v_{i}} \operatorname{Min}\left\{m_{0}^{-}\left(v_{i}\right), m_{1}^{-}\left(v_{i}\right)\right\}\right\}
$$

Calculating $S^{*}(u)$:
Two vertices of $v_{i}, v_{i^{\prime}} \in \operatorname{ch}(u)$ are black and they are dominated at most once. Moreover the other children of u are white and they are not dominated. So:

$$
S^{*}(u)=\operatorname{Min}_{v_{i}, v_{i^{\prime}} \in \operatorname{ch}(u)}\left\{\operatorname{Min}\left\{m_{0}^{+}\left(v_{i}\right), m_{1}^{+}\left(v_{i}\right)\right\}+\left\{\operatorname{Min}\left\{m_{0}^{+}\left(v_{i^{\prime}}\right), m_{1}^{+}\left(v_{i^{\prime}}\right)\right\}+\sum_{v \in \operatorname{ch}(u), v \neq v_{i}, v_{i^{\prime}}} m_{0}^{-}\left(v_{i}\right)\right\} .\right.
$$

2.4. Updating step for cut vertex of T :

In this step, for $i=0,1,2$ we define variables $m_{0}^{-} i(v)$ and $m_{i}^{+}(v)$ for cut nodes v of T.

Calculating $m_{0}^{+}(v)$ when v is not a pre-pendent:

In this case, v is black so all the children of v and all children of $\operatorname{ch}(v)$ already have a black neighbor. Since v should not dominate by any vertices, So, all child $u \in \operatorname{ch}(v)$ must be white and they are dominated at most once.

$$
m_{0}^{+}(v)=1+\sum_{u \in c h(v)} S_{0,1}^{-}(u)
$$

Calculating $m_{1}^{+}(v)$ when v is not a pre-pendent:

In this case, v is black and it is dominated once, so one of the following cases can occurs:

- In this case, exactly one vertex of block $u_{i} \in \operatorname{ch}(v)$ is black and other children of u_{i} have color white and are not dominated. For the other block $u \in \operatorname{ch}(v)$, all child are white and they are dominated at most once. We have:

$$
M_{1}^{+}=1+\operatorname{Min}_{u_{i} \in c h(v),\left|u_{i}\right| \neq 0}\left\{S_{0}^{-}\left(u_{i}\right)+\sum_{u \in c h(v), u \neq u_{i}} S_{0,1}^{-}(u)\right\} .
$$

- For exactly one block $u_{i} \in c h(v)$, one nodes of $c h\left(u_{i}\right)$ and the black vertex dominate at most once. The other vertices of $\operatorname{ch}\left(u_{i}\right)$ are white and they are not dominated. In addition, for the other block $u \in \operatorname{ch}(v)$, all of their children are white and they are dominated at most once. We have:

$$
M_{1}^{\prime+}=\operatorname{Min}_{u_{i} \in c h(v)}\left\{S_{0}^{+}\left(u_{i}\right)+\sum_{u \in c h(v), u \neq u_{i}} S_{0,1}^{-}(u)\right\}
$$

Minimum of M_{1}^{+}and M_{1}^{++}is the best value for $m_{1}^{+}(v)$. So:

$$
m_{1}^{+}(v)=\operatorname{Min}\left\{M_{1}^{+}, M_{1}^{\prime+}\right\}
$$

Calculating $m_{2}^{+}(v)$ when v is not a pre-pendent:
In this case, v is black and it is dominated twice, so one of the following cases can occurs:

- There exist at least one vertex $u_{i} \in \operatorname{ch}(v)$ such that $\left|u_{i}\right|=\left|c h\left(u_{i}\right)\right|=1$. In this case, vertex in block u_{i} is black, its child is black and it is not dominated. So we have:

$$
M_{2}^{+}=1+\operatorname{Min}_{u_{i} \in \operatorname{ch}(v),\left|u_{i}\right|=\left|\operatorname{ch}\left(u_{i}\right)\right|=1}\left\{m_{0}^{+}\left(\operatorname{ch}\left(u_{i}\right)\right)\right\}+\sum_{u \in c h(v), u \neq u_{i}} S_{0,1}^{-}(u) .
$$

If there is not any node $u_{i} \in \operatorname{ch}(v)$ such that $\left|u_{i}\right|=\left|\operatorname{ch}\left(u_{i}\right)\right|=1$, then $M_{2}^{+}=\infty$.

- There exist at least one vertex $u_{i} \in \operatorname{ch}(v)$ such that $\left|u_{i}\right|=0$ and $\left|\operatorname{ch}\left(u_{i}\right)\right|=2$. In this case, both children of $\operatorname{ch}\left(u_{i}\right)$ are black and it is not dominated. So we have:

$$
M_{2}^{\prime+}=\operatorname{Min}_{u_{i} \in \operatorname{ch}(v),\left|u_{i}\right|=0,\left|\operatorname{ch}\left(u_{i}\right)\right|=2}\left\{m_{0}^{+}\left(\operatorname{ch}\left(u_{i}\right)\right)\right\}+\sum_{u \in \operatorname{ch}(v), u \neq u_{i}} S_{0,1}^{-}(u) .
$$

If there is not any node $u_{i} \in \operatorname{ch}(v)$ such that $\left|u_{i}\right|=\left|\operatorname{ch}\left(u_{i}\right)\right|=1$, then $M_{2}^{\prime+}=\infty$.

- For exactly two block $u_{i}, u_{j} \in \operatorname{ch}(v)$, one vertex is black, so all children of $\operatorname{ch}\left(u_{i}\right)$ and $\operatorname{ch}\left(u_{j}\right)$ should be white and they are not dominated. For the other block $u \in \operatorname{ch}(v)$, all child must be white and they are dominated at most once. We have:

$$
M_{2}^{\prime \prime+}=2+\operatorname{Min}_{u_{i}, u_{j} \in c h(v)}\left\{S_{0}^{-}\left(u_{i}\right)+S_{0}^{-}\left(u_{j}\right)+\sum_{u \in c h(v), u \neq u_{i}, u_{j}} S_{0,1}^{-}(u)\right\} .
$$

- For exactly one block $u_{i} \in \operatorname{ch}(v)$, one vertex is black, so all children of $\operatorname{ch}\left(u_{i}\right)$ should be white and they are not dominated. In addition, for exactly one block $u_{j} \in c h(v)$, exactly one child is black and dominated at most once and the other child is white and not dominated. Also, all children other child $u \in \operatorname{ch}(v)$ should be white and they are dominated at most once.. We have:

$$
M_{2}^{\prime \prime \prime}+=1+\operatorname{Min}_{u_{i}, u_{j} \in c h(v)}\left\{S_{0}^{-}\left(u_{i}\right)+S_{0}^{+}\left(u_{j}\right)+\sum_{u \in c h(v), u \neq u_{i}, u_{j}} S_{0,1}^{-}(u)\right\}
$$

- For exactly two blocks $u_{i}, u_{j} \in \operatorname{ch}(v)$, exactly one child is black and dominated at most once and the other child is white and not dominated. Also, all children other child $u \in \operatorname{ch}(v)$ should be white and they are dominated at most once.. We have:

$$
M_{2}^{\prime \prime \prime \prime}+\operatorname{Min}_{u_{i}, u_{j} \in c h(v)}\left\{S_{0}^{-}\left(u_{i}\right)+S_{0}^{-}\left(u_{j}\right)+\sum_{u \in c h(v), u \neq u_{i}, u_{j}} S_{0,1}^{-}(u)\right\} .
$$

Minimum of $M_{2}^{\prime+}, M_{2}^{\prime \prime+}, M_{2}^{\prime \prime \prime}+$ and $M_{2}^{\prime \prime \prime \prime}+$ is the best value for $m_{1}^{+}(v)$. So:

$$
m_{1}^{+}(v)=\operatorname{Min}\left\{M_{2}^{\prime+}, M_{2}^{\prime \prime+}, M_{2}^{\prime \prime \prime}+, M_{2}^{\prime \prime \prime \prime}+\right\}
$$

Calculating $m_{0}^{-}(v)$ when v is not a pre-pendent

In this case, v is white and none of the child of v and $\operatorname{ch}(v)$ are not black. If v has a child like u that is a none empty block node, then vertices of u can not dominated by any vertices because v or $\operatorname{ch}(u)$ can only dominate u. So, $m_{0}^{-}(v)=\infty$ otherwise we have:

$$
m_{1}^{-}(v)=\sum_{u \in c h(v)} S_{1,2}^{-}(u)
$$

Calculating $m_{1}^{-}[v]$ when v is not a pre-pendent

In this case, v is white and exactly one of the child of v or $c h(v)$ are black.

- The node v has at least two children like u_{1} and u_{2} that are none empty block node. So vertices of u_{1} or vertices of u_{2} can not dominated and $m_{1}^{-}(v)=\infty$.
- The node v has only one none empty child like u_{1} and the other children are empty. So two cases appear:

1. One of the vertex of block node u_{1} is black and all of children of u_{1} are white and are dominated at most once.
2. All vertices of block node u_{1} are white, exactly one child v_{i} of u_{1} is black, the other are white. Moreover, v_{i} is dominated once or twice and white siblings of v_{i} are dominated at most once.

And we have:

$$
m_{1}^{-}(v)=\operatorname{Min}\left\{1+S_{0,1}^{-}\left(u_{1}\right)+\sum_{u \in \operatorname{ch}(v), u \neq u_{1}} S_{1,2}^{-}(u), S_{0,1}^{+}(u)+\sum_{u \in c h(v), u \neq u_{1}} S_{1,2}^{-}(u)\right\}
$$

- All children of v are empty. So, among all children of v, there is exactly one node u_{i} such that u_{i} has only a black child the other is white. In other child $u \neq u_{i}$, all nodes of $\operatorname{ch}(u)$ should be white and we have:

$$
m_{1}^{-}(v)=\operatorname{Min}_{u_{i} \in c h(v)}\left\{S_{0,1}^{+}\left(u_{i}\right)+\sum_{u \in c h(v), u \neq u_{i}} S_{1,2}^{-}(u)\right\}
$$

All children of v are empty. So, from exactly one child u_{i} of v, one of the children is black and the others are white. In other child $u \neq u_{i}$, all nodes of $\operatorname{ch}(u)$ should be white and we have:

$$
m_{1}^{-}(v)=\operatorname{Min}_{u_{i} \in c h(v)}\left\{S_{0,1}^{+}\left(u_{i}\right)+\sum_{u \in c h(v), u \neq u_{i}} S_{1,2}^{-}(u)\right\}
$$

Calculating $m_{2}^{-}[v]$ when v is not a pre-pendent

In the last cases, we consider v is white and exactly two children of v or $\operatorname{ch}(v)$ are black.

- The node v has more than two none empty children, $m_{2}^{-}[v]=\infty$.
- The node v has only two none empty children like u_{1} and u_{2} and the other children are empty. So, for u_{1}, u_{2} and the other vertices one of the following cases appears:

1. One of the vertex of block nodes u_{1} and u_{2} are black, all of children of them are white and are dominated at most once.
2. One of the vertex of block node u_{1} is black, all of children of it are white and are dominated at most once. Moreover, all of the vertices of block node u_{2} are white, one of its child is black, the others are white and dominated at most once. (u_{1} and u_{2} can replace.)
3. All of the vertices of block node u_{1}, u_{2} are white, one of its child is black, the others are white and dominated at most once.

So we have:

$$
\begin{array}{r}
m_{2}^{-}(v)=\operatorname{Min}\left\{2+S_{0,1}^{-}\left(u_{1}\right)+S_{0,1}^{-}\left(u_{2}\right)+\sum_{u \in c h(v), u \neq u_{1}, u_{2}} S_{1,2}^{-},\right. \\
1+S_{0,1}^{+}\left(u_{1}\right)+S_{0,1}^{-}\left(u_{2}\right)+\sum_{u \in c h(v), u \neq u_{1}, u_{2}} S_{1,2}^{-}, \\
1+S_{0,1}^{+}\left(u_{2}\right)+S_{0,1}^{-}\left(u_{1}\right)+\sum_{u \in \operatorname{ch}(v), u \neq u_{1}, u_{2}} S_{1,2}^{-}, \\
\left.S_{0,1}^{+}\left(u_{1}\right)+S_{0,1}^{+}\left(u_{2}\right)+\sum_{u \in c h(v), u \neq u_{1}, u_{2}} S_{1,2}^{-}\right\}
\end{array}
$$

- The node v has only one none empty child u_{1}. So, one of the following cases occurs for u_{1} :

1. Two children of u_{1} are black and the others are white and not dominated at most once.
2. One vertex of block node u_{1} and one of its child are black and the other children of u_{1} are white and not dominated.
3. One vertex of block node u_{1} is black and all of children of u_{1} are white and are dominated at most once.
4. All vertices of block node u_{1} are withe, one of its child are black and the other children of u_{1} are white and not dominated.

For other child u of $\operatorname{ch}(v)$, there are exactly one node u_{i} such that one child of it is black and the others are white. Obviously, all child of other siblings u_{i} are white. So we have:

$$
\begin{aligned}
m_{2}^{-}(v)= & \operatorname{Min}\left\{S^{*}\left(u_{1}\right)+\sum_{u \in c h(v), u \neq u_{1}} S_{1,2}^{-}\left(u_{1}\right),\right. \\
& 1+S_{0}^{+}\left(u_{1}\right)+\sum_{u \in c h(v), u \neq u_{1}} S_{1,2}^{-}\left(u_{1}\right), \\
& 1+S_{0,1}^{-}\left(u_{1}\right)+\operatorname{Min}_{u_{i} \in \operatorname{ch}(v), u_{i} \neq u_{1}}\left\{S_{0,1}^{+}\left(u_{i}\right)+\sum_{u \in c h(v), u \neq u_{i}, u_{1}} S_{1,2}^{-}(u)\right\}, \\
& \left.S_{0,1}^{+}\left(u_{1}\right)+\operatorname{Min}_{u_{i} \in \operatorname{ch}(v), u_{i} \neq u_{1}}\left\{S_{0,1}^{+}\left(u_{i}\right)+\sum_{u \in \operatorname{ch}(v), u \neq u_{i}, u_{1}} S_{1,2}^{-}(u)\right\}\right\}
\end{aligned}
$$

- All children of v are empty. So, from exactly two children u_{i}, u_{j} of v, one of the children is black and the others are white. In other child $u \neq u_{i}, u_{j}$, all nodes of $\operatorname{ch}(u)$ should be white and we have:

$$
m_{2}^{-}(v)=\operatorname{Min}_{u_{i}, u_{j} \in c h(v)}\left\{S_{0,1}^{+}\left(u_{i}\right)+S_{0,1}^{+}\left(u_{j}\right)+\sum_{u \in c h(v), u \neq u_{i}, u_{j}} S_{1,2}^{-}(u)\right\}
$$

2.5. Final state:

Let r be the root of refined cut tree T, r can be correspond to a cut vertex of G or a block of it. Depend on type of r one of the following cases appear:

1. The root r of T is a cut vertex of G.

Since for $i=0,1,2$ we compute $m_{i}^{+}[v]$ and $m_{i}^{-}[v]$ on a node of T that its corresponding vertex in G is a cut vertex, so we must choose best set among computed set of root r. Note that r should be black or white and should be dominated by one or two vertices. It means that:

$$
M=\operatorname{Min}\left\{m_{1}^{+}(r), m_{2}^{+}(r), m_{1}^{-}(r), m_{2}^{-}(r)\right\} .
$$

2. The root r of T is corresponding to a block of G.

Since, we computed $m^{+}[v], m_{0}^{-}[v], m_{1}^{-}[v]$ and $m_{2}^{-}[v]$ for all vertices $v \in \operatorname{ch}(r)$. Based on the number of vertices in block r and the number of its child, one of the following cases appear:
(a) $|r|=0$, so we have:

$$
M=\operatorname{Min}\left\{S_{1,2}^{-}(r), S_{0,1}^{+}(r), S^{*}(r)\right\}
$$

(b) $|r|>0$, so we have::

$$
M=\operatorname{Min}\left\{1+S_{0}^{+}(r), 1+S_{0,1}^{-}(r), S_{0,1}^{+}(r), S_{1,2}^{-}(r), S^{*}(r)\right\}
$$

Theorem 2.1. The value M computed by Algorithm 1 for the block graph G is size of the smallest total [1, 2]-set of G and is computed in linear-time.

Proof. The number of nodes in the refined cut tree T corresponding to block graph G is linear based on order of G, i.e. n. It is obvious that the algorithm traverses T once and is computed in linear-time $O(n)$.

```
Algorithm 1 Total [1, 2]-Dominating Set
    Input: A refined cut tree \(T\) of block graph \(G\).
    procedure Initializing step
    procedure Updating sTEP: \(\triangleright\) Depending on the type of non pre-pendant nodes in the post
    order traversal of \(T\), one of the following procedures is selected:
        procedure Updating step for block nodes of \(T\) :
            Calculating \(S_{0}^{-}(u), S_{0}^{-}(u), S_{0,1}^{-}(u), S_{1,2}^{-}(u), S_{0}^{+}(u), S_{0,1}^{+}(u)\) and \(S^{*}(u)\).
        procedure Updating step for cut vertex of \(T\)
            Calculating \(m_{0}^{+}(v), m_{1}^{+}(v), m_{0}^{-}(v), m_{1}^{-}[v]\) and \(m_{2}^{-}[v]\) when \(v\) is not a pre-pendent.
    procedure Final State
        if the root \(r\) of \(T\) is a cut vertex of \(G\) then \(M=\operatorname{Min}\left\{m_{1}^{+}(r), m_{2}^{+}(r), m_{1}^{-}(r), m_{2}^{-}(r)\right\}\).
        if the root \(r\) is a block and \(|r|=0\) then \(M=\operatorname{Min}\left\{S_{1,2}^{-}(r), S_{0,1}^{+}(r), S^{*}(r)\right\}\).
        if the root \(r\) is a block and \(|r|>0\) then
            \(M=\operatorname{Min}\left\{1+S_{0}^{+}(r), 1+S_{0,1}^{-}(r), S_{0,1}^{+}(r), S_{1,2}^{-}(r), S^{*}(r)\right\}\).
    Output: Size of minimum total \([1,2]\)-set of \(G\).
```


References

[1] A. V. Aho and J. E. Hopcroft, The design and analysis of computer algorithms, Pearson Education India, 1974.
[2] A. Bishnu, K. Dutta, A. Ghosh, and S. Paul, $(1, j)$-set problem in graphs, Discrete Math., 339 (2016), pp. 2515-2525.
[3] M. Chellali, O. Favaron, T. W. Haynes, S. T. Hedetniemi, and A. McRae, Independent [1, k]-sets in graphs, Australas. J. Combin., 59 (2014), pp. 144-156.
[4] M. Chellali, T. W. Haynes, S. T. Hedetniemi, and A. McRae, [1, 2]-sets in graphs, Discrete Appl. Math., 161 (2013), pp. 2885-2893.
[5] O. Etesami, N. Ghareghani, M. Habib, M. Hooshmandasl, R. Naserasr, and P. Sharifani, When an optimal dominating set with given constraints exists, Theor. Comput. Sci., 780 (2019), pp. 54-65.
[6] A. K. Goharshady, M. R. Hooshmandasl, and M. Alambardar Meybodi, [1, 2]-sets and [1, 2]-total sets in trees with algorithms, Discrete Appl. Math., 198 (2016), pp. 136-146.
[7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in graphs: Advanced topics, Marcel Decker Inc., NY, (1998).
[8] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, vol. 208 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998.
[9] S. T. Hedetniemi and R. C. Laskar, Topics on domination, Elsevier, 1991.
[10] D. B. West et al., Introduction to graph theory, Prentice hall Upper Saddle River, 2 ed., 2001.
Please cite this article using:
Pouyeh Sharifani, Mohammadreza Hooshmandasl, Saeid Alikhani, A linear-time algorithm to compute total [1, 2]-domination number of block graphs, AUT J. Math. Com., 1(2) (2020) 263-270
DOI: 10.22060/ajmc.2020.18444.1035

[^0]: *Corresponding author.
 E-mail addresses: pouyeh.sharifani@gmail.com, hooshmandasl@uma.ac.ir, hooshmandasl@yazd.ac.ir, alikhani@yazd.ac.ir

