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ABSTRACT: In the current study, by a general fuzzy automaton we aim at showing
a set of propositions related to a given automaton showing that the truth-values are
depended on thestates, inputs and membership values of active states at time t. This
new approach enables us to consider automata from a different point of view which is
more close to logical treatment and helps us make estimations about the behavior of
automaton particularly in a nondeterministic mode. The logic consists of propositions
on the given GFA and its dynamic nature is stated by means of the so-called transition
functor. This logic enables us to derive a certain relation on the set of states labeled
by inputs. In fact, it is shown that if our set of propositions is large enough, this
recovering of the transition relation is possible. Through a synthesis in the theory of
systems, this study contributes to construct a general fuzzy automaton which realizes
a dynamic process at least partially known to the user, which has been fully achieved
in Theorem 3.6. Also, we study the theory of general fuzzy automata by using the
concepts of operators. Such operators help us in the algebraic study of general fuzzy
automata theory and provide a platform to use fuzzy topological therein. Further,
a Galois connection is obtained between the state-transition relation on states and
thetransition operators on propositions. To illustrate the proposed approach, the
subject matter is more elaborated in detail through examples.
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1. Introduction

The concept of a finite automaton is well-known. Algebraic study of automata has been carried out by many authors
in many forms (cf., e.g., [5, 10, 12]). After the introduction of fuzzy set in 1965 by Zadeh [36], a number of concepts
in mathematics and other areas were fuzzified. Among the first such concepts was the concept of fuzzy automaton
firstly proposed by Wee [35] and Santos [27], to deal with the notions such as vagueness and imprecision, frequently
encountered in the study of natural languages. Further, Malik et. al. [16] introduced a considerably simpler notion
of a fuzzy finite state machine (which is almost identical to a fuzzy automaton) and contributed greatly towards the
algebraic study of fuzzy automata and fuzzy languages. M. Doostfatemeh and S. C. Kremer [9] used an extension
of the notion of fuzzy automata and gave the concept of general fuzzy automata (for simplicity GFA). Their key
motivation of introducing the notion general fuzzy automata was the insufficiency of the current literature to handle
the applications which rely on fuzzy automata as a modeling tool, and assign membership values to active states
of a fuzzy automaton. It will be interesting to see how the developed concepts and algorithms can be used in
practice. A very interesting and challenging implication of our approach is that a zero-weight transition is possible
and is different from no transition. A zero-weight transition may give rise to the activation of a successor due to
the activation of its predecessor. A number of researchers have contributed to the growth of fuzzy automata theory.
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Among these works, the work of Das [8] is towards the fuzzy topological characterization of a fuzzy automaton; the
work of Jin and his coworkers [13] is towards the algebraic study of fuzzy automata based on po-monoids; the work
of Kim, Kim and Cho [14] is towards the algebraic study of fuzzy automata theory; the work of Mockor [17, 18, 19]
is towards the use of categorical concepts in the study of fuzzy automata theory; the work of Abolpour and Zahedi
[1, 2, 3, 4] is towards the use of categorical concepts in the study of general fuzzy automata with membership values
in different lattice structures; the work of Horry and Zahedi [11] is towards the use of fuzzy topologies for the
study of a max-min general fuzzy automaton; the work of Qiu [23, 24, 25, 26] is towards the algebraic, topological
and categorical study of fuzzy automata theory based on residuated lattices; the work of Tiwari and his coworkers
[28, 29, 30, 31, 32, 33] is towards the algebraic, topological and categorical study of fuzzy automata; the work of
Peeva [21, 22] is on the study of minimizing the states of fuzzy automata and its application to study pattern
recognition; the work of Pal and the coworkers [20] is towards the study of fuzzy automaton based on residuated
and co-residuated lattice. In previous studies on dynamic logic, all considerations are made on a physical system
which is characterized by its states and transitions among the states. In fact, a dynamic logic B could assign the
every automaton A not considering if A is deterministic or nondeterministic. This logic enables us to formulate
observations on A in the form of composed propositions and, due to a transition functor T it captured the dynamic
behavior of A. There are formulated conditions under which the automaton A could be recovered by means of B and
T . It is worth mentioning that, one of the most important topics in mathematics is searching for the relationship
between logic and algebraic structures. Based on this, the theory of algebraic logic and ordered algebra has been
developed. Thus, the main purpose of this work is to investigate the properties of one of the two structures based
on the other. To this end, by establishing a relationship between logic structures and automata theory, we seek
to access the properties of automata by using the properties of logic structures. In this regard, by a general fuzzy
automaton we aim to demonstrate a set of propositions related to a given automaton showing that the truth-values
are dependent on the states, inputs and membership values of active states at time t. This new approach allows
us to consider automata from a different point of view which is more close to logical treatment and enables us to
make estimations about the behavior of automaton particularly in a nondeterministic mode. In this respect, in
the current study, investigating new directions in GFA based on a dynamic logical view, we realized that a general
fuzzy automaton is a specific case of such a physical system and tried to rewrite it to the specific case. This study
thus tries to present a new and general definition for fuzzy automata which not only encompassed all types of
automata, including conventional fuzzy automata, but also several other computational paradigms. The present
work, therefore, is an interdiseplinary study in which it investigated the relationship between a dynamic-logical
structure and general fuzzy automata. Regarding this, some properties related to the dynamic-logical structures
are compared and contrasted with those of general fuzzy automata. This approach can be compared with our model
and the one suggested by [6] where an automaton can be characterized by an operator over a Hilbert space or it
can be compared with the approach from [15] or [34].

2. preliminaries

In this section, the basic definitions and theorems used for the concepts in the next parts will be presented in
detail.

Definition 2.1. [9] A fuzzy set µQ defined on a set Q (discrete or continuous), is a function mapping each element
of Q to a unique element of the interval [0,1].

µQ : Q→ [0, 1]

Then, the fuzzy power set of Q denoted as P̃ (Q), is the set of all fuzzy subsets µQ, which can be defined on the set
Q.

P̃ (Q) = {µQ|µQ : Q→ [0, 1]}

Definition 2.2. [9] (Active state set) Knowing that the entered input prior for time t has been ak, active states
at time t are those states to which there is at least one transition on the input symbol ak. Then, the fuzzy set of
all active states at t (ordered pairs of states and their mv′s) is called active state set at time t, and is denoted as
Qact(t).

Definition 2.3. [9] A general fuzzy automaton (GFA) is considered as

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where (i) Q is a finite set of states, Q={q1, q2, . . . , qn}, (ii) Σ is a finite set of input symbols, Σ = {a1, a2, . . . ,
am}, (iii) R̃ is the set of fuzzy start states, R̃ ⊆ P̃ (Q), (iv) Z is a finite set of output symbols, Z = {b1, b2, . . . , bk},
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(v) ω : Q → Z is the output function, (vi) δ̃ : (Q × [0, 1]) × Σ × Q → [0, 1] is the augmented transition function.
(vii) Function F1 : [0, 1] × [0, 1] → [0, 1] is called membership assignment function. Function F1(µ, δ), as is seen,
is motivated by two parameters µ and δ, where µ is the membership value of a predecessor and δ is the weight of a
transition.

With this definition, the process that occurs upon the transition from state qi to qj an input ak is characterized by:

µt+1(qj) = δ̃((qi, µ
t(qi)), ak, qj) = F1(µt(qi), δ(qi, ak, qj)).

It means that membership value (mv) of the state qj at time t + 1 is calculated by function F1 utilizing both the
membership value of qi at time t and the weight of the transition.

There have been many options for the function F1(µ, δ). For instance, it can be max{µ, δ}, min{µ, δ}, µ+ δ

2
,

or any other pertinent mathematical functions.
As it can be observed in the above mentioned, associated with each fuzzy transition, there exists a membership
value (mv) in unit interval [0, 1]. We identify this membership value as the weight of the transition. The transition
from state qi (current state) to state qj (next state) upon input ak is designated as δ(qi, ak, qj). Hereafter, we apply
this notation to refer both to a transition and its weight. Whenever δ(qi, ak, qj) is used as a value, it refers to the
weight of the transition; otherwise, it identifies the transition itself. The set of all transitions of a general fuzzy
automaton F̃ , is denoted as ∆F̃ . However, whenever it is understood we remove the subscript, and write simply ∆.

Concerning this, we say that ∆ is a state-transition relation and it is regarded as a dynamics of F̃ . On the other
hand, we regularly formulate certain propositions on an automaton F̃ and draw conclusions from the behavior of
F̃ in the present or in the future.
(viii) F2 : [0, 1]∗ → [0, 1], is called multi-membership resolution function. The multi-membership resolution function
determines the multi-membership active states and allocates a single membership value to them.
We let Qact(ti) be the set of all active states at time ti, ∀i ≥ 0. We have Qact(t0) = R̃ and Qact(ti) =
{(q, µti(q))|∃q′ ∈ Qact(ti−1),∃a ∈ Σ, δ(q′, a, q) ∈ ∆}, ∀i ≥ 1. Since Qact(ti) is a fuzzy set, to demonstrate
that a state q belongs to Qact(ti) and T is a subset of Qact(ti), we should write: q ∈ Domain(Qact(ti)) and
T ⊆ Domain(Qact(ti)); henceforth. We simply specify them by: q ∈ Qact(ti) and T ⊆ Qact(ti).

Definition 2.4. [7] Let S be a non-empty set. Every subset R ⊆ S × S is called a relation on S and we declare
that the couple (S,R) is a transition frame.

Definition 2.5. [7] A mapping f is called order - preserving or monotone if a, b ∈ A and a ≤ b together imply
f(a) ≤ f(b) and order-reflecting if a, b ∈ A and f(a) ≤ f(b) together imply a ≤ b. A bijective order-preserving
and order-reflecting mapping f : A→ B is called an isomorphism and then we state that the partially ordered sets
(A;≤) and (B;≤) are isomorphic.

Definition 2.6. [7] Let (A;≤) and (B;≤) be partially order sets. A mapping f : A → B is called residuated if
there is a mapping g : B → A so that f(a) ≤ b if and only if a ≤ g(b) for all a ∈ A and b ∈ B. In this case, we
state that f and g form a residuated pair or that the pair (f, g) is a (monotone) Galois connection. The role of
Galois connections is indispensable for our constructions.

Definition 2.7. [7] If a partially ordered set A has both a bottom and a top element, it will be called bounded;
the pertinent notation for a bounded partially ordered set is (A;≤, 0, 1). Let (A;≤, 0, 1) and (B;≤, 0, 1) be bounded
partially ordered sets. A morphism f : A→ B of bounded partially ordered sets is an order, top element and bottom
element preserving map.

Observation 2.8. [7] Let A and M be bounded partially ordered sets, and hs : A → M , s ∈ S, morphisms of
bounded partially ordered sets. The conditions are equivalent:

(i) ∀s ∈ S hs(a) ≤ hs(b) ⇒ a ≤ b for any element a, b ∈ A;
(ii) The map iSA : A→MS defined by iSA(a) = (hs(a))s∈S for all a ∈ A is order-reflecting.

Then, we declare that {hs : A → M ; s ∈ S} is a full set of order-preserving mappings concerning M . Note that
in this situation we may specify A with a bounded subposets of MS because iSA is an order reflecting morphism
alias embedding of bounded partially ordered sets. For any s ∈ S and any p = (ps)s∈S we indicate by p(s) the s-th
projection ps. Note that iSA(a)(s) = hs(a) for all a ∈ A and all s ∈ S.

Definition 2.9. [7] Let A = (A;≤, 0, 1) and B = (B;≤, 0, 1) be bounded posets with a full set S of morphisms of
bounded posets into a non-trivial complete lattice M. We may assume that A and B are bounded subposets of MS.
Let P : A→ B and T : B → A be morphisms of posets. Let us define the relations

RT = {(s, t) ∈ S × S|(∀b ∈ B)(s(T (b)) ≤ t(b))}

and
RP = {(s, t) ∈ S × S|(∀a ∈ A)(s(a) ≤ t(P (a)))}.
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Lemma 2.10. [7] Let M be a non-trivial complete lattice and S a non-empty set so that A and B are bounded
subposets of MS. Let P : A→MS and T : B →MS be morphisms of posets so that, for all a ∈ A and all b ∈ B,

P (a) ≤ b⇔ a ≤ T (b).

(a) If P (A) ⊆ B then RT ⊆ RP .
(b) If T (B) ⊆ A then RP ⊆ RT .
(c) If P (A) ⊆ B and T (B) ⊆ A then RT = RP .

3. Construction of general fuzzy automata by dynamic logical view

One of the most important indicators in general fuzzy automaton is the existence of active state membership
values based on which we obtain different results. Therefore, we use active state membership values to construct
the logic structure. As a result, both active state membership values and the logical structure created by them are
discussed in this article. This section aims at deriving the logic B which is a set of propositions about the general
fuzzy automaton F̃ formulated by the observer and constructing an ordered algebra structure on B. If we fix an
input ak ∈ Σ at time ti the proposition α|ak can be computed by µti(qi) if the general fuzzy automaton F̃ is in the
state qi at time ti otherwise α|ak is 0 if F̃ is not in the active state qi. Thus, for each state qi ∈ Q we can assess
the truth value of α|ak , it is indicated by α|ak(qi). As explained above, α|ak(qi) ∈ [0, 1]. We can establish the order
≤ on B as follows: for α, β ∈ B, α ≤ β if and only if α(qi) ≤ β(qi) for all qi ∈ Q. One can instantly check that
the contradiction, i.e., the proposition with constant truth value 0, is the least element and the tautology, i.e., the
proposition with the constant truth value 1 is the greatest component of the partially order set (B;≤). Note that
any component ith of 1 is the maximum membership values of active states at time ti, for any i ≥ 0. This fact will
be stated by the notation B = (B;≤, 0, 1) for the bounded partially order set of proposition about the general fuzzy
automaton F̃ . Every automaton F̃ will be identified with the triple (B,Σ, Q), where B is the set of propositions
about F̃ , Σ is the set of possible inputs and Q is the set of states on F̃ . In what follows, the truth-values of our
logic B will be considered to be from the complete lattice M = ([0, 1];≤, 0, 1). Thus B will be bounded subposet
of MQ for the complete lattice M of truth-values.
We are given a set of labeled transitions ∆ ⊆ Q × Σ × Q so that for an input ak ∈ Σ, F̃ can go from qi to qj
provided δ(qi, ak, qj) ∈ ∆. As in the following, let M = ([0, 1];≤, 0, 1) be a bounded partially ordered set and
the bounded subposets A = (A;≤, 0, 1) and B = (B;≤, 0, 1) of MQ will stand for the possibly different logics of
propositions pertaining to our automaton F̃ , a corresponding set of states Q, and a state-transition relation ∆ on
Q. The operator Tδ : B → (MQ)Σ will prescribe to a proposition b ∈ B about F̃ a new proposition Tδ(b) ∈ (MQ)Σ

so that the truth value of Tδ(b) in state qm ∈ Q is the greatest truth value that is smaller than or equal to the
corresponding truth values of b in all states of Qsucc(qm, ak). If there exists no such state, the truth value of Tδ(b)
in state qm will be 1. Similarly, the operator Pδ : A → (MQ)Σ will prescribe to a proposition a ∈ A about F̃
a new proposition Pδ(a) ∈ (MQ)Σ so that the truth value of Pδ(a) in state qm ∈ Q is the smallest truth value
that is greater than or equivalent to the corresponding truth values of a in all states of Qpred(qm, ak). If there
is no such state, the truth value of Pδ(a) in state qm will be 0. Reflect on a complete lattice M = ([0, 1];≤, 0, 1)
and let A = (A;≤, 0, 1) and B = (B;≤, 0, 1) be bounded partially ordered sets with a full set Q of morphisms of
bounded partially ordered sets into a non-trivial complete lattice M. We may assume that A and B are bounded
subposets of MQ. Additionaly, let (Q,∆) be a transition frame. We can define mappings Pδ : A → (MQ)Σ and
Tδ : B → (MQ)Σ as follows:

For all b ∈ B and qm ∈ Q, ak ∈ Σ,

Tδak (b)(qm) = ∧M{b(qj)|qj ∈ Qsucc(qm, ak)}, (∗)

where

Qsucc(qm, ak) = {qj |δ(qm, ak, qj) ∈ ∆},

and for all a ∈ A
Pδak (a)(qm) = ∨M{a(qj)|qj ∈ Qpred(qm, ak)}, (∗∗)

where
Qpred(qm, ak) = {qj |δ(qj , ak, qm) ∈ ∆}.

Then we state that Tδ(Pδ) is an upper transition functor (lower transition functor) constructed through the transition
frame (Q,∆), respectively. We signify that Tδ is an order-preserving map so that Tδ(1) = 1 and correspondingly,
Pδ is an order-preserving map such that Pδ(0) = 0.

In order to illustrate our approach, we characterize the following example.
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Example 3.1. Consider the GFA in Figure 1. It is specified as: F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2), where Q =

{q0, q1, q2} is the set of states, Σ = {a, b} is the set of input symbols, R̃ = {(q0, 1)}, Z = ∅ and ω is not ap-

plicable. If we choose F1(µ, δ) = δ, F2() = µt+1(qm) =

n∧
i=1

(F1(µt(qi), δ(qi, ak, qm))), then we have:

Figure 1: The GFA of Example 3.1

µt0(q0) = 1

µt1(q1) = F1(µt0(q0), δ(q0, b, q1)) = δ(q0, b, q1) = 0.4,

µt2(q2) = F1(µt1(q1), δ(q1, a, q2)) = δ(q1, a, q2) = 0.3,

µt3(q1) = F1(µt2(q2), δ(q2, a, q1)) = δ(q2, a, q1) = 0.8,

µt3(q2) = F1(µt2(q2), δ(q2, a, q2)) = δ(q2, a, q2) = 0.1,

µt4(q2) = F1(µt3(q2), δ(q2, b, q2)) = δ(q2, b, q2) = 0.35.

The set B = {0, s0, s1, s2, s
′
0, s
′
1, s
′
2, 1} of possible propositions B about the automaton F̃ is as follows:

Table 1: Active states and their membership values (mv) at different times in Example 3.1 upon input string ”ba2b”

time t0 t1 t2 t3 t4
input ∧ b a a b
Qact(ti) q0 q1 q2 q1 q2 q2

mv 1 0.4 0.3 0.8 0.1 0.35

-0 means that the GFA is not in active states of Q,
-s0 means that the GFA is in active state q0,
-s1 means that the GFA is in active state q1,
-s2 means that the GFA is in active state q2,
-s
′

0 means that the GFA is either in active state q1 or in the active state q2,
-s
′

1 means that the GFA is either in active state q0 or in the active state q2,
-s
′

2 means that the GFA is either in active state q0 or in the active state q1,
-1 means that the GFA is in at least one active state of Q.
We may have B with the algebra [0, 1]Q as follows: 0 = (0, 0, 0), s0 = (1, 0, 0), s1 = (0, 0.8, 0), s2 = (0, 0, 0.35),
s′0 = (0, 0.8, 0.35), s′1 = (1, 0, 0.35), s′2 = (1, 0.8, 0), 1 = (1, 0.8, 0.35).
Here, α(qi) is the maximum membership values of active states at time ti for any i ≥ 0. We have δa =
{(q1, q2), (q2, q1), (q2, q2)} and δb={(q0, q1), (q2, q2)}, then ∆ = {(q0, q1), (q1, q2), (q2, q1), (q2, q2)}. Using our formu-
las (∗) and (∗∗), we can obtain the upper transition functors Tδa , Tδb : B → [0, 1]Q and the lower transition functors
Pδa , Pδb : B → [0, 1]Q as follows:

Tδa(0) = 0,
Tδa(0) = s0,
Tδa(s2) = s1,
Tδa(s′0) = s2,
Tδa(s′0) = s′0,
Tδa(s′0) = s′1,
Tδa(s2) = s′2,
Tδa(1) = 1,

Pδa(0) = 0,
Pδa(s0) = 0,
Pδa(s1) = s2,
Pδa(s2) = s′0,
Pδa(s′0) = s′0,
Pδa(s′1) = s′0,
Pδa(s′2) = s2,
Pδa(1) = 1,
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Tδb(0) = 0,
Tδb(s1) = s0,
Tδb(0) = s1,
Tδb(s2) = s2,
Tδb(s2) = s′0,
Tδb(s

′
0) = s′1,

Tδb(s1) = s′2,
Tδb(1) = 1,

Pδb(0) = 0,
Pδb(s0) = s1,
Pδb(s1) = 0,
Pδb(s2) = s2,
Pδb(s

′
0) = s2.

Pδb(s
′
1) = s′0,

Pδb(s
′
2) = s1,

Pδb(1) = 1.

E.g. Tδa(s2) = s1 meaning that if the GFA is in active state q1, when entering input a, will change to q2 and
Pδa(s2) = s′0 meaning that if the GFA is in active state q2, when entering a, will change to q1 or q2.

Let us define the relations

∆Tδ = {(qi, qj) ∈ Q×Q|∀b ∈ B, Tδ(b)(qi) ≤ b(qj)},

∆Pδ = {(qi, qj) ∈ Q×Q|∀a ∈ A, a(qi) ≤ Pδ(a)(qj)}.
In this situation, we assert that ∆ is recoverable from Tδ or that ∆ is recoverable from Pδ. We claim that ∆ is
recoverable if it is recoverable both from Tδ and Pδ.

Let us consider a general fuzzy automaton F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2). Clearly, ∆ can be written in the
following form

∆ =
⋃
ak∈Σ

δak

where δak ⊆ Q × Q for all ak ∈ Σ. Hence, for all ak ∈ Σ, using our formulas (∗) and (∗∗), we obtain the upper
transition functor Tδak : B → MQ and the lower transition functor Pδak : B → MQ. It follows that we have

functors Tδ = (Tδak )ak∈Σ : B → (MQ)Σ and Pδ = (Pδak )ak∈Σ : B → (MQ)Σ. We state that Tδ is the labeled upper

transition functor constructed by means of F̃ and Pδ is the labeled lower transition functor constructed by means
of F̃ . Note that any mapping T : B → (MQ)Σ corresponds to a mapping T̃ : Σ×B →MQ so that, for all ak ∈ Σ,
T = (T̃ (ak,−))ak∈Σ.
Hence, Tδ and Pδ will play the role of our transition functor. Now, let P = (Pak)ak∈Σ : B → (MQ)Σ and
T = (Tak)ak∈Σ : B → (MQ)Σ be morphisms of partially ordered sets.
For all ak ∈ Σ, let ∆Pak be the lower Pak -induced relation by M and ∆Tak

be the upper Tak -induced relation by

M. Then ∆P =
⋃
ak∈Σ

∆Pak is called the lower P -induced state-transition relation and ∆T =
⋃
ak∈Σ

∆Tak
is called

the upper T -induced state-transition relation. The general fuzzy automaton F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) with
state-transition relation ∆Pδ is said to be the lower Pδ-induced general fuzzy automaton and we consider it as F̃Pδ

and the general fuzzy automaton F̃ with state-transition relation ∆Tδ is said to be the upper Tδ-induced general
fuzzy automaton and we consider it as F̃Tδ . We say that the general fuzzy automaton F̃ is recoverable from Tδ(Pδ)
if, for all ak ∈ Σ, ∆ is recoverable from Tδak (Pδak ), i.e., if F̃ = F̃Tδ(F̃ = F̃Pδ).

Theorem 3.1. Let M = ([0, 1];≤, 0, 1) be a non-trivial complete lattice,

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2)

be a general fuzzy automaton and B be a bounded subposet of MQ. Let Pδ : B → (MQ)Σ and Tδ : B → (MQ)Σ be
labeled transition functors constructed by means of F̃ .
Then for all b1, b2 ∈ B,
(i) Pδ(b1) ≤ b2 ⇐⇒ b1 ≤ Tδ(b2).
Moreover, the following holds.
(ii) If ∆ = ∆Tδ and Tδ(B) ⊆ BΣ then ∆ = ∆Tδ = ∆Pδ .
(iii) If ∆ = ∆Pδ and Pδ(B) ⊆ BΣ then ∆ = ∆Tδ = ∆Pδ .

Proof. (i): Clearly for all b1, b2 ∈ B
Pδ(b1) ≤ b2 ⇐⇒ ∀ak ∈ Σ, Pδak (b1) ≤ b2
⇐⇒ ∀ak ∈ Σ, qi ∈ Q,Pδak (b1)(qi) ≤ b2(qi)

⇔ ∀ak ∈ Σ, qi ∈ Q, qj ∈ Qpred(qi, ak), b1(qj) ≤ b2(qi)

⇔ ∀ak ∈ Σ, qj ∈ Q, qi ∈ Qsucc(qj , ak), b1(qj) ≤ b2(qi)

⇔ ∀ak ∈ Σ, qj ∈ Q, b1(qj) ≤ Tδak (b2)(qj)

⇔ ∀ak ∈ Σ, b1 ≤ Tδak (b2)

⇔ b1 ≤ Tδ(b2).
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(ii): Assume that ∆ = ∆Tδ and Tδ(B) ⊆ BΣ. We first show that ∆Pδ ⊆ ∆Tδ . Let qi,qj ∈ Q and (qi, qj) ∈ ∆Pδ . Let
b1 ∈ B. We put b2 = Tδ(b1). Partially (i) we have Pδ(Tδ(b1)) ≤ b1 and hence Tδ(b1)(qj) ≤ Pδ(Tδ(b1))(qi) ≤ b1(qi),
i.e., (qi, qj) ∈ ∆Tδ and we have ∆Pδ ⊆ ∆Tδ . Then ∆ ⊆ ∆Pδ ⊆ ∆Tδ = ∆ which yields the statement.

�

(iii): It follows from the same reasoning as in (ii).

Example 3.2. Consider the general fuzzy automaton F̃ of Example 3.1. Let P be a restriction of the operator
Pδb of Example 3.1 and Let T be a restriction of the operator Tδb of the same example. Let us compute ∆T and
∆P . We have ∆T = ∆P = {(q0, q1), (q2, q2)}. Hence the transition relation δb of Example 3.1 coincides with our
induccd transition relations ∆T and ∆P . We can see from obove that the oprator Tδb bears the maximal amount of
information about the transition relation δb on the subposet of PδboTδb . The same conclusion holds for the operator
Pδb .

Example 3.3. Consider the general fuzzy automaton F̃ of Example 3.1. Let us put B = [0, 1]Q. Let P : [0, 1]Q →
[0, 1]Q and T : [0, 1]Q → [0, 1]Q be morphisms of partially ordered sets given as follows:

T (0) = 0,
T (0) = s0,
T (s2) = s1,
T (s′0) = s2,
T (s′0) = s′0,
T (s′0) = s′1,
T (s2) = s′2,
T (1) = 1,

P (0) = 0,
P (s0) = 0,
P (s1) = s2,
P (s2) = s′0,
P (s′0) = s′0,
P (s′1) = s′0,
P (s′2) = s2,
P (1) = s′0.

Note that P coincides with the operator Pδa of Example 3.1, and T coincides with the operator Tδa of the same
example. We have ∆T = ∆P = {(q1, q2), (q2, q1), (q2, q2)}. The transition relation δa of Example 3.1 coincides with
or induces transition relation ∆T and ∆P .

The following corollary illustrates the situation in the case where our partially ordered set B of propositions is large
enough, i.e., the case when [0, 1]Q ⊆ B.

Corollary 3.2. Let M be a non-trivial complete lattice and F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) a general fuzzy automaton.
Let B be a bounded subposet of MQ so that [0, 1]Q ⊆ B. Then the general fuzzy automaton F̃ is recoverable both
from Pδ and Tδ.

Proof. Define, for all qi ∈ Q, an element b(qi) ∈ [0, 1]Q ⊆ B by

[b(qi)](qj) =

{
0 if qi = qj
µti(qj) if qi 6= qj

.

Then b(qi) ∈ B satisfies the assumption of part (ii) of Theorem 3.1, i.e., ∆ = ∆Tδ . Similarly, ∆ = ∆Pδ .

�

In the following theorems, we are going to demonstrate that the state-transition relation on Q and the transition
operators on B form a Galois connection. This is significant since in every Galois connection one of its components
completely ascertains the second one and vice versa.
Let M = ([0, 1];≤, 0, 1) be a non-trivial complete lattice and Q a non-empty set of states of F̃ . Let B be a bounded
subposet of MQ, (ξ(Q×Q);⊆, ∅, Q×Q) be the poset of all relations on Q and (Map(B,MQ);v) be the poset of
all order-preserving mappings T : B → (MQ)Σ so that T (1) = 1 and T1 v T2 if and only if T2(b) ≤ T1(b) for all
b ∈ B. The smallest element of (Map(B,MQ);v) is the constant mapping 1 so that 1(b) = (1)qi∈Q for all b ∈ B.
Let us put, for all ∆T ∈ ξ(Q×Q) and all T ∈Map(B,MQ), φ(∆T ) = Tδ and ψ(T ) = ∆Tδ .

Theorem 3.3. Let M = ([0, 1];≤, 0, 1) be a non-trivial complete lattice and Q the set of states of general fuzzy
automaton F̃ so that B is a bounded subposet of MQ. Then the couple (φ, ψ) is a Galois connection between
(ξ(Q×Q);⊆, ∅, Q×Q) and (Map(B,MQ);v).
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Proof. It is clear that φ and ψ defined above are order-preserving mappings. It is enough to check that, for all
∆T ∈ ξ(Q×Q) and all T ∈Map(B,MQ)

φ(∆T ) v T if and only if ∆T ⊆ ψ(T ).

Assume first that φ(∆T ) v T holds and let (qi, qj) ∈ ∆T . Then, for all b ∈ B; we have T (b)(qi) ≤ (φ(∆T )(b))(qi) =
Tδ(b)(qi) = ∧{b(qj)|qj ∈ Qsucc(qi, ak)} ≤ b(qj). This yields that (qi, qj) ∈ ψ(T ) = ∆Tδ .
On the other hand, assume that ∆T ⊆ ψ(T ) and let b ∈ B, qi ∈ Q. Either the set {qj ∈ Q|(qi, qj) ∈ ∆T } = ∅ in
which case (Tδ(b))(qi) = 1 which yields (T (b))(qi) ≤ 1 = (φ(∆T )(b))(qi) or {qj ∈ Q|(qi, qj) ∈ ∆T } 6= ∅.
In the last case, we have {b(qj) ∈ T |(qi, qj) ∈ ∆T } 6= ∅ and by the definition of φ(∆T ) = Tδ we have (Tδ(b))(qi) =
∧{b(qj)|qj ∈ Qsucc(qi, ak)} ≤ b(qj) for all qj ∈ Q so that (qi, qj) ∈ ∆T . Since ∆T ⊆ ψ(T ) we have, for all qj ∈ Q so
that (qi, qj) ∈ ∆T , that, for all c ∈ B, (T (c))(qi) ≤ c(qj). It follows that (T (c))(qi) ≤ (Tδ(c))(qi) = (φ(∆T )(c))(qi).
But we have just proved that φ(∆T ) v T .

�

Remark 3.4. We indicate that our recoverable relations from the respective upper transition operators are exactly
fixpoints of the composition ψoφ : ξ(Q×Q)→ ξ(Q×Q).

Dually, let M = ([0, 1];≤, 0, 1) be a non-trivial complete lattice and Q be the set of states of general fuzzy au-
tomata F̃ . Let A be a bounded subposet of MQ, (ξ(Q × Q);⊆, ∅, Q × Q) be the poset of all relations on Q and
(Map0(A,MQ);≤) be the poset of all order-preserving mappings P : A → (MQ)Σ so that P (0) = 0 and P1 ≤ P2

if and only if P1(a) ≤ P2(a) for all a ∈ A. The smallest element of (Map0(A,MQ);≤) is the constant 0 so that
0(a) = (0)qi∈Q for all a ∈ A. Let us put, for all ∆T ∈ ξ(Q × Q) and all P ∈ Map0(A,MQ),Φ(∆P ) = Pδ and
Ψ(P ) = ∆Pδ .

Theorem 3.5. Let M = ([0, 1];≤, 0, 1) be a non-trivial lattice and Q be the set of states of general fuzzy automata F̃
so that A is a bounded subposet of MQ. Then the couple (Φ,Ψ) is a Galois connection between (ξ(Q×Q);⊆, ∅, Q×Q)
and (Map0(A,MQ);≤).

Proof. Consider (Map0(A,MQ);≤) = (Map(Aop, (Mop)Q);v), Φ(∆P ) = Pδ = ϕ(∆T−1) and Ψ(P ) = ∆Pδ =
ψ(T−1). Then the proof is similar to that of Theorem 3.5.

�

Example 3.4. Consider the general fuzzy automaton F̃ , the set of propositions B and the state - transition relation
∆ of Example 3.1. From Example 3.1, we know the labeled upper transition functor Tδ = (Tδa , Tδb) and the labeled
lower transition functor Pδ = (Pδa , Pδb) from B to ([0, 1]Q)Σ. Since B = [0, 1]Q we have Tδa(B) ∪ Tδb(B) ⊆ B
and Pδa(B) ∪ Pδb(B) ⊆ B. Now, we use Tδ for computing the transition relations, ∆Tδa

and ∆Tδb
(by the formula

(∗) and Example 3.4) and Pδ for computing the transition relations ∆Pδa and ∆Pδb (by the formula (∗∗) and
Example 3.4). We obtain by the Corollary 3.2 that ∆Tδa

= ∆Pδa = δa and ∆Tδb
= ∆Pδb = δb. It follows that

∆Tδ = ∆Pδ = ∆Tδa
∪ ∆Tδb

= ∆ i.e., Our given state-transition relation ∆ simulatianeously is recoverable by the
transition functors Tδ and Pδ. Hence these functors are carachteristics of the triple (B,Σ, Q).

By a synthesis in theory of systems, it is usually meant that the task constructs a general fuzzy automaton F̃ which
realizes a dynamic process at least partially known to the user.
Hence, we are given a description of this dynamic process and we know the set Σ of inputs. Our task is to set up the
set Q of states and a relation ∆ on Q labeled by elements from Σ so that the constructed general fuzzy automaton
F̃ induces the logic, i.e., the partially ordered set of propositions which corresponds to the presented descriptions.
The algebraic tools which were collected in previous sections enable us to solve the mentioned task. In what
follows, we represent a construction of Q and ∆ which provides our logic with the transition functor representing
the dynamics of our system. As mentioned in the previous section, our logic B will be considered to be a bounded
subposet B of a power MQ where M is a complete lattice of truth-values. Our logic B is equipped with a transition
functor T : B → (MQ)Σ where Σ is a set of possible inputs. We ask that either T = Tδ or T = Pδ.
Depending on the respective type of our submitted logic and of the properties of T we will introduce some possible
solutions to this task.
For any bounded partially ordered set B = (B;≤, 0, 1). We have a full set SB of morphisms of bounded partially
ordered set into the algebra regarded as a bounded partially ordered set ([0, 1],≤, 0, 1). The elements hD : B → [0, 1]
of SB (indexed by proper down-sets D of B) are morphisms of bounded partially ordered sets defined by the
prescription, for all ak ∈ Σ

hDak (b) =

{
Tak(b) if b /∈ D
0 if b ∈ D

.
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In other words, every bounded partially ordered set B can be embedded into an algebra [0, 1]S for a certain set S
via the mapping iSB.
Thus, it seems confident to apply the bounded partially ordered set M = ([0, 1];≤, 0, 1) for the construction of
our state-transition ∆ ⊆ SB × Σ × SB . As it was mentioned in the beginning of this section, we are interested in
a construction of a general fuzzy automaton F̃ for a given set Σ of inputs and determined by a certain partially
ordered set of propositions. We cannot assume that this set of propositions is necessarily a Boolean algebra. In the
previous part, we supposed that this logic B is a bounded partially ordered set B = (B;≤, 0, 1). Now, we are going
to solve the situation when it is only a subset C of B.

Theorem 3.6. Let B = (B;≤, 0, 1) be a bounded partially ordered set so that B is a bounded subposet of MSB .
Let (C;≤, 1) be a subposet of B including 1, and Σ a non-empty set. Let T = (Tak)ak∈Σ where Tak : C → MSB

are morphisms of partially ordered sets so that TaK (1) = 1 for all ak ∈ Σ. Let ∆T be the labeled upper T -induced
state-transition relation and Tδ : B → (MSB )Σ be the labeled upper transition functor constructed by means of the
upper Tδ-induced automaton F̃Tδ . Then, for all b ∈ C, T (b) = Tδ(b).

Proof. Clearly, Tδ = (Tδak )ak∈Σ where Tδak : B → MSB are morphisms of partially ordered sets for all ak ∈ Σ.

We write ∆T =
⋃
ak∈Σ

∆Tak
where ∆Tak

, ak ∈ Σ are the Tak -induced relation by M . Let us choose b ∈ C and

ak ∈ Σ arbitrarily, but fixed. We have to check that Tak(b) = Tδak (b). Suppose that hD ∈ SB, ak ∈ Σ. It is enough
to verify that Tak(b)(hD) = ∧{b(hC)|hC ∈ Qsucc(hD, ak)}. Evidently, for all hC ∈ SB so that (hD, hC) ∈ ∆Tak

,
Tak(b)(hD) ≤ b(hC). Hence Tak(b)(hD) ≤ ∧{b(hC)|hC ∈ Qsucc(hD, ak)}. To get the other inequality, assume that

Tak(b)(hD) < ∧{b(hC)|hC ∈ Qsucc(hD, ak)}.

Then Tak(b)(hD) = 0 and ∧{b(hC)|hC ∈ Qsucc(hD, ak)} 6= 0.
Put Vak = {z ∈ B|∃y ∈ C, Tak(y)(hD) 6= 0 and y ≤ z}. It follows that b 6∈ Vak and Vak is an upper set of B so
that 1 ∈ Vak (since hVak (1) = Tak(1) = 1 6= 0). Let Wak be a maximal proper upper set of B including Vak so
that b 6∈ Wak . Put Uak = B\Wak . Then Uak is a proper down-set, 0 ∈ Uak , hUak (b) = 0 and hUak (z) 6= 0 for
all z ∈ Vak , i.e., hUak ∈ SB so that Tak(a)(hD) ≤ a(hUak ) for all a ∈ C. But this yields (hD, hUak ) ∈ ∆Tak

, i.e.,
0 6= ∧{b(hC)|hC ∈ Qsucc(hD, ak)} ≤ b(hUak ) = hUak (b) = 0, a contradiction.

�

Using the relation ∆P instead of ∆T , we can obtain a statement dual of Theorem 3.6.
Consequently, with respect to the above mentioned materials and Theorem 3.6, we obtain the the upper Tδ-induced
general fuzzy automaton F̃Tδ as ten-tuple machine denoted with F̃Tδ = (SB ,Σ, R̃ = {(h{0}, µt0(h{0}))}, Z, ω, δ, δ̃, Tδ,
F1, F2) where,
(i) SB is the set of states, SB = {hD : B → [0, 1], D ⊆ B} so that for all ak ∈ Σ

hDak (b) =

{
Tδak (b) if b /∈ D
0 if b ∈ D

,

(ii) Σ is a finite set of input symbols, Σ = {a1, a2, . . . , am},
(iii) R̃ = {(h{0}, µt0(h{0}))} is the set of fuzzy start state,
(iv) Z is a finite set of output symbols, Z = {b1, b2, . . . , bk},
(v) ω : SB → Z is the output function,
(vi) δ : SB × Σ× SB → [0, 1] is the transition function defined by:

δ(hD, ak, hC) = hDak (b) ∨ hCak (b)

for all b ∈ B and D, C ⊆ B,
(vii) δ̃ : (SB × [0, 1])× Σ× SB → [0, 1] is the augmented transition function so that:
µt+1(hD) = δ̃ ((hD, µ

t(hD)), ak, hC) = F1(µt(hD), δ(hD, ak, hC)),
(viii) Tδ : B → (MSB )Σ is the labeled upper transition functor so that Tδak (b)(hD) = ∧{b(hC)|hC ∈ Qsucc(hD, ak)}
for all ak ∈ Σ,
(ix) F1 : [0, 1]× [0, 1]→ [0, 1] is called membership assignment function,
(x) F2 : [0, 1]? → [0, 1] is called multi-membership resolution function.

Example 3.5. Consider again the set Q = {q0, q1, q2} of states, the set Σ = {a, b}, and the set of propositions
B = [0, 1]Q of Example 3.1. Assume that C = {0, s2, s

′
0, s
′
1, 1} ⊆ B from the logic B of Example 3.1. Assume

further that our partially known transition operator T from C to ([0, 1]Q)Σ is given as follows:

Ta(0) = 0, Ta(s′0) = s′0, Tb(1) = 1,
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Ta(s′0) = s2, Ta(s′0) = s′1, Tb(s2) = s′0,

Ta(1) = 1, Tb(s2) = s2, Tb(s
′
0) = s′1.

Note that we have chosen T as a resteriction of the operator Tδ from Example 3.1 on the set C. Then, by an
easy computation we optain from (∗) that ∆T = ∆Ta ∪ ∆Tb where ∆Ta = {(q1, q2), (q2, q1), (q2, q2)} and ∆Tb =
{(q0, q1), (q2, q2)}. From Theorem 3.6, we have that T is a restriction of the operator T∆T

on the set C. Moreover,
we can see that our state transition relation ∆ from Example 3.1 coincids with the induced state-transition relation
∆T . i.e., our partialy known transition operator T has given us a full information about the general fuzzy automaton
F̃ from Example 3.1.

4. Conclusion

By a general fuzzy automaton, we contributed to show a set of propositions related to a given automaton and that
the truth-values are depended on the states, inputs and membership values of active states at time t. This approach
enables us to consider automata from a different point of view which is more close to logical treatment and helps us
make estimations about the behavior of automaton particularly in a nondeterministic mode. The logic consists of
propositions on the given GFA and its dynamic nature is stated by means of the so-called transition functor. This
logic enables us to derive a certain relation on the set of states labeled by inputs. In fact, we showed that if our set
of propositions is large enough, this recovering of the transition relation is possible. Moreover, a very challenging
implication of our approach is that a zero-weight transition is possible and is different from no transition. A zero-
weight transition may give rise to the activation of a successor due to the activation of its predecessor. While in
all types of conventional automata, a zero-weight transition means no transition, in our approach to general fuzzy
automata a zero-weight transition does not necessarily imply no transition. That is why we use [0; 1] as the fuzzy
interval. Then, in this paper we studied the theory of general fuzzy automata by using the concepts of operators.
Such operators help us in the algebraic study of general fuzzy automata theory and provide a platform to use fuzzy
topological therein in the future.
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