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On the gradient Finsler Yamabe solitons
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ABSTRACT: Here, it is proved that the potential functions of Finsler Yamabe
solitons have at most quadratic growth in distance function. Also it is obtained a
finite topological type property on complete gradient Finsler Yamabe solitons under
suitable scalar curvature assumptions.
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1. Introduction

The Yamabe flow was introduced first by R.S. Hamilton to study Yamabe’s conjecture, stating that any metric is
conformally equivalent to a metric with constant scalar curvature, see [9]. Yamabe flow is an evolution equation on
a Riemannian manifold (M, g) defined by

∂g

∂t
= −Rg, g(t = 0) := g0,

where R is the scalar curvature. Under the Yamabe flow, the conformal class of metrics remains invariant and is
expected to evolve a manifold toward one with constant scalar curvature. Let (M, g) be a Riemannian manifold, a
quad (M, g, V, λ) is said to be a Yamabe soliton if g satisfies the equation

L
V
g = 2(λ−R)g, (1.1)

where V is a smooth vector field on M , L
V

the Lie derivative along V and λ a real constant. A Yamabe soliton is
said to be shrinking, steady or expanding if λ > 0, λ = 0 or λ < 0, respectively. If the vector field V is a gradient
of a potential function f , then (M, g, V, λ) is said to be gradient and (1.1) takes the familiar form

∇∇f = (λ−R)g.

Yamabe solitons are special solutions of the Yamabe flow and naturally arise as limits of dilations of singularities in
the Yamabe flow. Solutions of Yamabe elliptic equation on Riemannian manifolds are laying in the Sobolev space
H2

1 (M). Currently, a natural extension of Sobolev spaces is defined on Finsler manifolds, see [2].

*Corresponding author.
E-mail addresses: m.yarahmadi@scu.ac.ir

229



Mohamad Yar Ahmadi., AUT J. Math. Com., 1(2) (2020) 229-233, DOI:10.22060/ajmc.2020.18420.1034

J.Y. Wu has proved that the complete shrinking gradient Yamabe solitons with bounded scalar curvature have
finite topological type, see [11]. Also, it is shown that a complete gradient shrinking Ricci soliton has finite
topological type if its scalar curvature is bounded by Fang, Man and Zhang, see [8]. Next, it is proved that
a complete non-compact shrinking Yamabe soliton has finite fundamental group and its first cohomology group
vanishes under a suitable condition, see [5]. Recently, a natural extension of Yamabe solitons for Finsler metrics is
considered and a similar result is obtained for the complete Finslerian Yamabe solitons, see [6], [5], [4], [3] and [7].

2. Preliminaries and terminologies

Let M be a real n-dimensional differentiable manifold. We denote by TM its tangent bundle and by π : TM0 −→
M , the fibre bundle of non zero tangent vectors. A Finsler structure on M is a function F : TM −→ [0,∞),
with the following properties: I. Regularity: F is C∞ on the entire slit tangent bundle TM0 = TM\0. II.
Positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0. III. Strong convexity: The n × n Hessian matrix
gij(x, y) = ([1

2F
2]yiyj ) is positive definite at every point of TM0. A Finsler manifold (M,F ) is a pair consisting

of a differentiable manifold M and a Finsler structure F . The Hessian matrix gij define a (0, 2)-tensor field g on
π∗TM , called Finslerian metric tensor. The formal Christoffel symbols of second kind and the spray coefficients
are denoted respectively by γijk := gis 1

2

(∂gsj
∂xk
− ∂gjk

∂xs + ∂gks
∂xj

)
, and Gi := 1

2γ
i
jky

jyk. We consider also the reduced

curvature tensor Rik which is expressed entirely in terms of the x and y derivatives of spray coefficients Gi, see [1].

Rik :=
1

F 2

(
2
∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
)
. (2.1)

In the general Finslerian setting, one of the Ricci tensors introduced by H. Akbar-Zadeh is defined by

Ricjk := [
1

2
F 2Ric]yjyk ,

where Ric = Rii is called the Ricci scalar and Rik is defined by (2.1), (see [1] page 191). One of the advantages of
this Ricci quantity is its independence to the Cartan, Berwald or Chern (Rund) connections. A family of Finsler
metrics g(t) on M is called a Finsler Yamabe flow if it satisfies the equations

∂

∂t
gjk = −Hggjk, g(t = 0) := g0 ,

where Hg = gijRicij is called the scalar curvature. This equation implies that

∂

∂t
(logF (t)) = −1

2
H
g
, F (t = 0) := F

0
,

where, F
0

is the initial Finsler structure corresponding to g0. Let γ : [a, b] −→ M be a piecewise C∞ curve on

(M,F ) with the velocity dγ
dt = dγi

dt
∂
∂xi ∈ Tγ(t)M . The integral length L(γ) is given by

L(γ) =

∫ b

a

F (γ,
dγ

dt
)dt.

For p, q ∈M, denote by Γ(p, q) the collection of all piecewise C∞ curves γ : [a, b] −→M with γ(a) = p and γ(b) = q.
Let M be a connected manifold and define a distance function d : M ×M −→ [0,∞) by

d(p, q) := inf
γ∈Γ(p,q)

L(γ).

Note that in general this distance function is not symmetric, see [1]. According to the Hopf-Rinow’s theorem, on a
forward (or backward) geodesically complete Finsler space, every two points p, q ∈ M can be joined by a minimal
geodesic.

The map γ(s, t) admits a canonical lift defined by

γ̂(s, t) := (γ(s, t), γ′(s, t)).

Denote by SM the sphere bundle, defined by SM :=
⋃
x∈M

SxM where SxM := {y ∈ TxM |F (x, y) = 1}. For a

vector field X = Xi(x) ∂
∂xi on M define ‖X‖x = max

y∈SxM

√
gij(x, y)XiXj , where x ∈ M , (see [1] at p. 321). Since

SxM is compact, ‖X‖x is well defined.
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3. Gradient Finsler Yamabe solitons

Let ρ : M → R be a real differentiable function on the Finsler manifold (M, g). We consider here the vector field
gradρ(p) ∈ TpM , defined by gradρ := ρi(x) ∂

∂xi , where ρi(x) = gij(x, gradρ(x)) ∂ρ∂xj as the gradient of ρ at point
p ∈M . Equivalently

ggradρ(p)(X, gradρ(p)) = dρp(X), ∀X ∈ TpM.

Let (M,F ) be a Finsler manifold and V = vi(x) ∂
∂xi a vector field on M . We call the quad (M,F, V, λ) a Finsler

Yamabe soliton if gjk the Hessian related to the Finsler structure F satisfies

LV̂ gjk = 2(λ−H)gjk, (3.1)

where, V̂ is the complete lift of V and λ ∈ R. A Finsler Yamabe soliton is said to be shrinking, steady or expanding
if λ > 0, λ = 0 or λ < 0, respectively. If the vector field V is gradient of a potential function f , then (M,F, V, λ)
is said to be gradient Finsler Yamabe soliton. The Yamabe soliton is said to be forward complete (resp. compact)
if (M,F ) is forward complete (resp. compact). Note that according to the Hopf-Rinow’s theorem, two notions
forward complete and forward geodesically complete are equivalent.

3.1. Estimations for the potential function

We want to obtain some estimation for the potential function as follows:

Theorem 3.1. The potential function f : M −→ R of a complete non-compact gradient Finsler Yamabe soliton
has at most quadratic growth for distance function. That is,

(a) if H > 0, f(x) 6 λ
2 d(p, x)2 + Cd(p, x) +D,

(b) if H > λ, f(x) 6 Cd(p, x) +D.

Proof. Recall that the Lie derivative of a Finsler metric tensor gjk is given by

LV̂ gjk = ∇jvk +∇kvj + 2(∇0v
l)Cljk, (3.2)

where V̂ is the complete lift of a vector field V = vi(x) ∂
∂xi

on M , ∇ is the Cartan h-covariant derivative, Cljk are
the components of Cartan torsion tensor, ∇0 := yp∇p and ∇p := ∇ δ

δxp
. Now by using V = ∇f in the gradient

Finsler Yamabe soliton (3.1), we have

∇j∇kf +∇k∇jf + 2(∇0∇lf)Cljk = 2(λ−H)gjk. (3.3)

Fix one point p ∈ M . Given any point x ∈ M , let γ be a unit speed minimal geodesic joining p to x and
ρ(x) = d(p, x). Contracting (3.3) with γ′

j
γ′
k

gives along γ

∇γ̂′∇γ̂′f = λ−H. (3.4)

On the other hand, by compatibility of metric in the Cartan connection, we have along the geodesic γ

∇γ̂′∇γ̂′f = ∇γ̂′(γ′
k∇kf) =

d

ds
(γ′

k∇kf) =
d

ds
(<γ′,∇f>), (3.5)

where γ̂′ = γ′
j δ
δxj . Therefore we have for all t ∈ [0, ρ(x)]∫ t

0

∇γ̂′∇γ̂′f ds =<γ′(t),∇f> − <γ′(0),∇f> . (3.6)

(a) By assumptions H > 0, we have
∇γ̂′∇γ̂′f = λ−H 6 λ.

Integrating both sides of the last equation leads to∫ t

0

∇γ̂′∇γ̂′f ds 6 λt.

Replacing (3.6) in the last formula we get <γ′(t),∇f> − <γ′(0),∇f>6 λt and therefore

d

dt
f(γ(t)) 6 λt+ <γ′(0),∇f> .
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By means of Cauchy-Schwarz inequality we have

d

dt
f(γ(t)) 6 λt+ ‖∇f‖p.

Integrating from 0 to ρ(x) leads to

f(γ(ρ(x)))− f(γ(0)) 6
λ

2
ρ(x)2 + (‖∇f‖p)ρ(x).

Hence we get

f(x) 6
λ

2
ρ(x)2 + (‖∇f‖p)ρ(x) + f(p),

as we have claimed in (a).
(b) H > λ, we have

∇γ̂′∇γ̂′f = λ−H 6 0.

Integrating both sides of the last equation leads to∫ t

0

∇γ̂′∇γ̂′f ds 6 0.

Replacing (3.6) in the last formula we get <γ′(t),∇f> − <γ′(0),∇f>6 0 and therefore

d

dt
f(γ(t)) 6<γ′(0),∇f> .

By means of Cauchy-Schwarz inequality we have

d

dt
f(γ(t)) 6 ‖∇f‖p.

Integrating from 0 to ρ(x) leads to

f(γ(ρ(x)))− f(γ(0)) 6 (‖∇f‖p)ρ(x).

Hence we get
f(x) 6 (‖∇f‖p)ρ(x) + f(p),

as we have claimed in (b). �

3.2. Finite topological type of gradient Finsler Yamabe solitons

Recall that M has finite topological type if M is homeomorphic to the interior of a compact manifold with boundary.
Isotopy Lemma says if there is a proper smooth function f : M −→ R such that f has no critical points outside a
compact subset of M , by Morse theory, M is diffeomorphic to the interior of a compact manifold with (smooth)
boundary, see [10].

Theorem 3.2. Let (M,F ) be a geodesically complete Finsler manifold satisfying

LV̂ gjk > 2(λ−H)gjk, (3.7)

where V = ∇f and the scalar curvature H 6 Λ < λ. Then M has finite topological type.

Proof. It’s enough to show that the potential function f is proper and has no critical points of a compact set.
Let p ∈ M be a fix point and let γ be a minimal geodesic by arc length joining p to any point x ∈ M . Note that
ρ(x) = d(p, x). Then we have

∇γ̂′∇γ̂′f > λ−H.

Integrating of both sides the last formula and using (3.6), we get

<γ′(t),∇f> − <γ′(0),∇f>>
∫ t

0

(λ−H)ds >
∫ t

0

(λ− Λ) = (λ− Λ)t.

Therefore
<γ′(t),∇f>> (λ− Λ)t+ <γ′(0),∇f> .
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By Cauchy-Schwarz inequality we have

‖∇f‖γ(t) > (λ− Λ)t− ‖∇f‖p.

Set t = ρ(x). we get
‖∇f‖x > (λ− Λ)ρ(x)− ‖∇f‖p.

Therefore ‖∇f‖x has a linear growth in ρ(x) = d(p, x). Obviously, f−1
(
(−∞, a]

)
is compact for any a <∞ and so

f is a proper function. Also, one can easily check that f has no critical points outside of a compact set. In fact,

it’s enough to consider a compact set B̄+
p (

2‖∇f‖p
λ−Λ ). The deformation lemma(Isotopy Lemma) of Morse theory leads

to M has finite topological type. �

Corollary 3.3. Any forward complete shrinking, steady or expanding gradient Finsler Yamabe soliton with H 6 Λ
for some constant Λ < λ has finite topological type.
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