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ABSTRACT: In this paper, we consider the Homicidal Chauffeur (HC) problem as
an interesting and practical differential game. At first, we introduce a bilevel optimal
control problem (BOCP) and prove that a saddle point solution for this game exists
if and only if this BOCP has an optimal solution in which the optimal value of
the objective function is equal to 1. Then, BOCP is discretized and converted to
a nonlinear bilevel programming problem. Finally, an Artificial Bee Colony (ABC)
algorithm is used for solving this problem, in which the lower-level problem will be
considered as a constraint and solved by an NLP-solver. Finally, to demonstrate the
effectiveness of the presented method, various cases of HC problem are solved and the
simulation results are reported.
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1. Introduction

The differential games are a type of dynamic games in which the game state is described by a system of differential
equations [17, 2]. The Pursuit-Evasion (PE) Games are an important and interesting class of differential games,
which model a conflict between two competitive players, namely pursuer and evader.

One of the most widely studied PE games is the Homicidal Chauffeur(HC) game [17]. The HC problem, as
one of the first motivated problems in the field of dynamic games, has both historical and mathematical interests
[22]. In the HC problem, a car (pursuer) and a pedestrian (evader) are located in an infinite planar parking. The
car is faster with a finite minimum-turn radius and the pedestrian is slower but more agile. Capture occurs when
the distance between the car and pedestrian becomes equal to a given capture radius. The car attempts to capture
or run down the pedestrian in minimum time and the pedestrian wishes to maximize the capture time or avoid
capturing.

There are also problems that have similar dynamic equations with HC problem, but in these problems, the
objective of the players differ. Among them, surveillance-evasion problem [19], suicidal pedestrian and collision
avoidance differential game [10, 11] are the most well known.

The difficulty of HC lies in the fact that solution of the problem is not unique and the solution depends very
strongly upon the speeds of the players and maneuverability of the car [20].

The HC problem is introduced by Isaacs [17]. Since then, several numerical methods for solving this problem
have been developed. For instance, we can refer to indirect methods [18], semi-direct methods [14, 23, 18], heuristic
methods [15], HJB methods [12], and others [18, 21, 20].
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In the indirect methods, by using the necessary optimality conditions, the PE problem is reduced to a system of
Differential Algebraic Equations (DAEs). Then, by eliminating the control functions, the obtained DAE is converted
into a Two-Point Boundary Value Problem (TBVP), which can be solved by a BVP-solver. However, the numerical
solution of TPBVPs arising from PE games is difficult due to at least three reasons: 1) the BVP-solvers need to
an initial guess and generally the BVP-solvers are very sensitive to the initial guess when they are applied to the
TPBVPs arising from PE games. Accordingly, providing a suitable initial guess is a major difficulty. 2) When the
controls are bounded, as in HC problem, discontinuities appear in the resulting TPBVP. As a consequence, the
discretization of the resulting TPBVP leads to a discontinuous or non-smooth system of algebraic equations, which
causes the failure of solvers to find the correct solution. 3) There exist solutions for the mentioned BVP which are
not the game solution.

It seems that the direct methods, which do not use the necessary conditions and are widely applied to optimal
control problems, can be applied to PE problems, too. However, the direct discretization of PE games leads to
a nontraditional optimization problem, which cannot be solved straightforwardly by the well-known optimization
solvers. In addition, the accuracy is not satisfactory [9].

Due to the aforementioned difficulties occurred in the solution of PE problems by the indirect and direct methods,
the researchers developed the so-called semi-direct methods [14, 15, 18]. The semi-direct methods are less sensitive
to the initial guess in comparison with the indirect methods; However, in the practical problems, the sensitivity to
initial guess is problematic such that the genetic algorithm is used to provide a suitable initial guess [15, 25]. It is
worth noting that under some suitable conditions, the equivalence between the associated optimal control problem
and original PE game is guaranteed [14, 26].

Due to technical challenges in the solution of PE games, practical methods often rely on heuristic methods. In
these methods, a heuristic method (mostly Genetic Algorithm) is used for finding an initial guess. However, in most
problems, the provided initial guesses are not a good approximation of the game solution. The main reason lies in
the fact that these heuristics deal with the TPBVP, which arise from the indirect methods [14, 15, 16, 25, 24].

The goal of this paper is to provide a direct numerical method based on heuristic algorithms for solving HC prob-
lem, which leads to a solution that satisfies the necessary optimal condition but does not have the disadvantageous
of the indirect methods.

In this regard, firstly, an equivalent BOCP to HC problem will be proposed. Then, utilizing the Euler method,
this BOCP is discretized to a nonlinear bilevel optimization problem. In this bilevel problem, the lower-level
problem is considered as a constraint and is solved by an NLP-solver. Moreover, the upper-level problem will be
solved by heuristic Artificial Bee Colony (ABC) Algorithm.

The paper is organized as follows. Section 2 provides the mathematical model and necessary optimality condition
of HC problem. Section 3 provides some necessary backgrounds for BOCPs. In Section 4, we present our new method
for solving HC problem. The proposed method is applied to nine cases of HC in Section 5. Conclusions are then
presented in Section 6.

2. Problem Statement

The mathematical model of the HC problem is as follows [17]

HC Problem :



min
up(t)

max
ue(t)

J = tf

ẋp(t) =

ẋp(t)ẏp(t)
ϕ̇p(t)

 =

vp cos (ϕp(t))
vp sin (ϕp(t))

up(t)

 , xp(0) =

xp0

yp0

ϕp0


ẋe(t) =

[
ẋe(t)
ẏe(t)

]
=

[
ve cos (ue(t))
ve sin (ue(t))

]
, xe(0) =

[
xe0

ye0

]
− 1 ≤ up(t) ≤ +1,

(xp(tf)− xe(tf))
2 + (yp(tf)− ye(tf))

2 − d2 = 0.

(1a)

(1b)

(1c)

(1d)

(1e)

In this problem, vp and ve are the speeds of car and pedestrian, respectively, and vp > ve. Note that, in problem
(1), the final time tf is the first time that capture occurs, in other words,

tf = inf{t ∈ R+ : (xp(t)− xe(t))2 + (yp(t)− ye(t))2 − d2 = 0.} (2)

It is common for a terminal surface of a game to be divided into two regions: the Usable Part and the Nonuseable
Part, which are separated by what is known in the literature as the Boundary of the Usable Part. The usable part
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is the subset of the terminal surface on which the pursuer can enforce capture, namely, penetration of the terminal
surfaces [17]. The usable part of the terminal surface for the game at hand can be specified by

ve

vp
< cos(s), 0 ≤ s ≤ π/2, (3)

where s = ue(tf)− ϕp(tf).

2.1. Necessary optimality conditions for saddle-point solution

To state the necessary conditions for saddle point solution of the problem (1), the following Hamiltonian function
is considered

H (up,xp,λp, ue,xe,λe, t) := λTp (t)

ẋp(t)ẏp(t)
ϕ̇p(t)

+ λTe (t)

[
ẋe(t)
ẏe(t)

]
, (4)

where, λTp (t) ∈ R3 and λTe (t) ∈ R2 are the co-state variables conjugate to the state equations (1b) and (1c),
respectively. Also, the function of terminal conditions is considered as follows,

` (xp(tf),xe(tf), tf) := tf + ν
(
(xe(tf)− xp(tf))

2 + (ye(tf)− yp(tf))
2 − d2

)
, (5)

where, ν ∈ R is the adjoint variable conjugate to the terminal constraint (1e).
According to [7], [2], if

(
u∗p, u

∗
e ,x
∗
p,x
∗
e , t
∗
f

)
be the solution of the HC problem (1), then there exist λ∗p(t) ∈ R3

and λ∗e(t) ∈ R2, such that the following co-state equations are satisfied

λ̇
∗
p(t) =

λ∗xp
(t)

λ∗yp(t)

λ∗ϕp
(t)

 = −


∂H(·)
∂xp(t)
∂H(·)
∂yp(t)
∂H(·)
∂ϕp(t)

 = vp

 0
0

λ∗xp
(t) sin

(
ϕ∗p(t)

)
− λ∗yp(t) cos

(
ϕ∗p(t)

)
 ,

λ̇
∗
e(t) =

[
λ∗xe

(t)
λ∗ye(t)

]
= −

[
∂H(·)
∂xe(t)
∂H(·)
∂ye(t)

]
= 0,

(6a)

(6b)

where (·) = (up,xp,λp, ue,xe,λe, t).
Moreover, the co-states λ∗p(t) and λ∗e(t) satisfy the following terminal conditions

λ∗p(t∗f ) =


∂`(xp(tf ),xe(tf ),tf )

∂xp(t)
∂`(xp(tf ),xe(tf ),tf )

∂yp(t)
∂`(xp(tf ),xe(tf ),tf )

∂ϕp(t)

 = −2ν

xep(tf)yep(tf)
0

 ,
λ∗e(t∗f ) =

[
∂`(xp(tf ),xe(tf ),tf )

∂xe(t)
∂`(xp(tf ),xe(tf ),tf )

∂ye(t)

]
= 2ν

[
xep(tf)
yep(tf)

]
,

(6c)

(6d)

such that
xep(t) := xe(t)− xp(t),

yep(t) := ye(t)− yp(t).

Transversality condition for this problem is

H (up,xp,λp, ue,xe,λe, t) |t=tf = − ∂`
∂tf

(xp(tf),xe(tf), tf) . (6e)

By the equation (6e), we have

2ν =
−1

vp [xep(tf) cos (ϕp(tf)) + yep(tf) sin (ϕp(tf))]− ve [xep(tf) cos (ue(tf)) + yep(tf) sin (ue(tf))]
(6f)

Moreover, (u∗p, u
∗
e) satisfies the following conditions

u∗p(t) = argmin
|up|≤1

H ⇒ u∗p(t) =


1 λ∗ϕp

(t) < 0

∈ [−1, 1] λ∗ϕp
(t) = 0

−1 λ∗ϕp
(t) > 0

u∗e(t) = argmax
ue

H ⇒ −λ∗xe
(t)ve sin (u∗e(t)) + λ∗ye(t)ve cos (u∗e(t)) = 0.

(6g)

(6h)

By equation (6b) and (6h), one may see easily that the control u∗e(t) is constant in the whole time [0, tf
∗].
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3. Background on Bilevel Programming Problems

In this section, we provide a brief introduction to bilevel programming.

Definition 3.1. For an upper-level (leader) objective function F : Rn × Rm → R and a lower-level (follower)
objective function f : Rn × Rm → R, a bilevel problem is expressed by

min
x∈X

F (x, y)

Gk(x, y) ≤ 0, k = 1, . . . ,K

min
y∈Y

f(x, y)

gj(x, y), j = 1, . . . , J ≤ 0

(7)

where Gk : X ×Y → R, k = 1, . . . ,K denote the upper-level constraints, and gj : X ×Y → R, j = 1, . . . , J represent
the lower-level constraints, respectively. Equality constraints may also exist that have been avoided for brevity [3].

The bilevel programming problem has a natural interpretation as a noncooperative game between two players.
Player A (the “leader”) chooses her decision x first, and afterward player B (the “follower”) observes x and responds
with a decision y. Both the objective function and the feasible region of the follower may depend on the leader’s
decision. Likewise, the leader has to satisfy a constraint that depends on the follower’s decision.

Definition 3.2. For a given (fixed) vector x̄ ∈ X, the lower-level feasible set is defined by

Ω(x̄) = {y ∈ Y : g(x̄, y) ≤ 0},

while the lower-level reaction set is

R(x̄) = {y ∈ Y : y ∈ argmin(f(x̄, ŷ), ŷ ∈ Ω(x̄))}.

There are two modeling approaches to bilevel programming: optimistic and pessimistic. In the first one, it is
assumed that, whenever the reaction set R(x) is not a singleton, the leader is allowed to select the element in Ω(x)
that suits him best, while in the second one, the cooperation of the leader and follower is not allowed [3].

BOCPs are a special class of optimization problems combining Bilevel Programming Programs and optimal
control theory. A general formulation for BOCPs includes an optimal control problem in both levels, commonly
linked with the dynamical system [3, 8, 13].

4. The Presented Method for solving HC

In this section, a new numerical method is presented to solve HC (1). In the presented method, at first the HC
problem will be associated with an equivalent BOCP and then, by discretization of this BOCP, an ordinary bilevel
problem will be obtained. Finally, this bilevel problem will be solved by a heuristic ABC algorithm.

4.1. Associating a BOCPs with the HC problem

Let’s consider the following BOCP

max
ue,te≥0

J1 =
1

1 + (te − tp)2

s.t. ẋe(t) = ve cos (ue(t)) , xe(0) = xe0,

ẏe(t) = ve sin (ue(t)) , ye(0) = ye0,

sin (ue(t)) =
ye(te)− yp(tp)

d
,

cos (ue(t)) =
xe(te)− xp(tp)

d
,

min
up∈[−1,1],tp≥0

J2 = tp

s.t. ẋp(t) = vp cos (ϕp(t)) , xp(0) = xp0,

ẏp(t) = vp sin (ϕp(t)) , yp(0) = yp0,

ϕ̇p(t) = up(t), ϕp(0) = ϕp0,(
xp(tp)− xe(te)

)2
+
(
yp(tp)− ye(te)

)2 − d2 = 0,

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

(8g)

(8h)

(8i)

(8j)
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In BOCP (8), it is understood that, for a given (ue(t), te), we first calculate xe(te) and ye(te) through (8b) and
(8c) respectively. Then, we choose (up(t), tp) to minimize J2 subject to the lower-level problem (8f)-(8j). Now, if
equations (8d) and (8e) hold, then (ue(t), te) is feasible for the upper-level problem (8). We should maximize J1

over all the feasible points (ue(t), te). In problem (8), the pursuer is the lower-level decision-maker, which observes
the strategy of the evader and then optimizes its strategy by solving the lower-level problem (8f)-(8j).

Let ue = u∗e with final time te = t∗f be a solution of problem (8), where up = u∗p with final time tp = t∗f is the
optimal solution of the lower-level problem (8f)-(8j). In this case, we have J1 = 1. For such case, we have the
following theorem

Theorem 4.1. HC problem (1), has an optimal solution, iff the BOCP (8) has an optimal solution, and the optimal
value of the upper-level objective function is 1.

Proof. Suppose that (ue(t), te) is the optimal solution of (8), and the value of upper-level objective function
equals 1. We will show that this solution satisfies in (6). Note that, in this case, we have te = tp. This common
value for the final time will be shown by tf .

For this solution, xe(tf ) and ye(tf ) are obtained by equation (8b) and (8c). Then these two variables are given
to the lower-level problem (8f)-(8j) as known parameters. The optimal solution of the lower-level problem is the
best response of pursuer to evader.

Let up(t) and tf be the optimal solution of the lower-level problem, according to Bryson and Ho [7], there exist
γxp

(t), γyp(t) and γϕp
(t) such that the following first order optimality conditions are satisfied

Costate equation:


γ̇xp

(t) = −∂Hp

∂xp
= 0,

γ̇yp(t) = −∂Hp

∂yp
= 0,

γ̇ϕp
(t) = −∂Hp

∂ϕp
= −γxp

(t)vp sin (ϕp(t)) + γyp(t)vp cos (ϕp(t)) ,

Control equation: up(t) =

 1 if γϕp
(t) < 0

0 if γϕp
(t) = 0

−1 if γϕp(t) > 0

Terminal condition:


γxp(tf) =

∂`p
∂xp

= −2αxep(tf)

γyp(tf) =
∂`p
∂yp

= −2αyep(tf)

γϕp(tf) =
∂`p
∂ϕp

= 0

Transversality condition: Hp

(
up, xp, yp, γxp

, γyp , γϕp
, t
)
|t=tf = −∂`p

∂tp

(9a)

(9b)

(9c)

(9d)

where
Hp

(
up, xp, yp, γxp

, γyp , γϕp
, t
)

:= γxp
(t)vp cos (ϕp(t)) + γyp(t)vp sin (ϕp(t))) + γϕp

(t)up(t),

and
`p (xp(tp), yp(tp), tp;xe(te), ye(te)) := tp + α

[(
xp(tp)− xe(te)

)2
+
(
yp(tp)− ye(te)

)2 − d2
]
.

are respectively the Hamiltonian function and the function of terminal condition for the lower-level problem (8f)-(8j).
Define

γ̇xe
(t) = 0, γxe

(tf) = 2αxep(tf),

γ̇ye(t) = 0, γ5(tf ) = 2αyep(tf).

(9e)

(9f)

Now using equation (8d) and (8e), we have

γye(t) cos (ue(t))− γxe(t) sin (ue(t)) = 0. (9g)

Let

2ν́ =
1

vp(xep(tf) cosϕp(tf) + yep(tf) sinϕp(tf))− ve(xep(tf) cos(ue(tf)) + yep(tf) sin(ue(tf)))
. (10)

By (3), we have
α

ν́
= 1− ve

vp

d

d cos (ϕp(tf)− ue(tf))
> 0. (11)

Multiply variables γxp , γyp , γϕp , γxe and γye by ν́
α , equation (9) will be converted to necessary optimality condition

(6).
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Conversely, suppose that (up(t), ue(t), tf ) is the optimal solution of game, i.e., satisfies necessary optimality
conditions (6). We will show that this is a feasible solution for bilevel (8) and clearly for this solution, the value of
upper-level objective function equals 1. It is obvious that equation (8b), (8c) and (8g)-(8j) hold. By equation (6b),
(6d) and (6h) we have,

tanue(t) =
λye(t)

λxe
(t)

=
yep(tf)

xep(tf)
, (12)

and then,

sin(ue(t)) =
yep(tf)

d
,

cos(ue(t)) =
xep(tf)

d
.

(13a)

(13b)

So equation (8d) and (8e) hold. It is concluded from equation (12) that, pursuer’s final position lies on the evader’s
path. In other words, evader’s optimal path overlaps with the vector (xep(tf), yep(tf)). It is because that evader is
maximizer and pursuer is minimizer. In addition, by the definition of saddle point solution in differential games [6],
this solution is the optimal solution for the lower-level problem (8f)-(8j).

�

Remark 1. In the lack of equations (8d)-(8e), the bilevel (8) convert to an optimistic model, which does not
correspond to the HC problem.

Remark 2. Note that there exist (ue(t), up(t), tf ) that satisfies the necessary optimality condition (6), but equation
(2) does not hold for them and hence these kinds of triples are not an optimal solution for HC problem (1). The
bilevel problem (8), discard these solutions because they are not satisfied the equations (8d) and (8e).

4.2. Discretization of the obtained BOCP

In this paper, to discretize the BOCP (8), we use the direct Euler method [5, 4], which is known as a simple
and robust method for solving optimal control problems. We should mention that any other method can be used
for discretizing BOCP (8).

Let n be a positive integer number and hs := ts/n, s = p, e. Define τs,i := ihs, i = 0, . . . , n, s = p, e and for the
sake of simplicity in notations, set

as,i := xs(τs,i), bs,i := ys(τs,i), ci := ϕp(τs,i), ds,i := us(τs,i), i = 0, . . . , n, s = p, e.

In the direct Euler method, the differential equations are approximated by the Euler method with step length h. In
summary, by applying the direct Euler method, the BOCP (8) is transcribed to the following bilevel programming
problem:

max
de,i, te≥0

J1 =
1

1 + (te − tp)2

s.t. ae,i+1 = ae,i +
te
n
ve cos (de,i) , i = 0, . . . , n− 1, ae,0 = xe0,

be,i+1 = be,i +
te
n
ve sin (de,i) , i = 0, . . . , n− 1, be,0 = ye0,

sin (de,n) =
be,n − bp,n

d
,

cos (de,n) =
ae,n − ap,n

d
,

min
|dp,i|≤1,i=0,...,n, tp≥0

J2 = tp

s.t. ap,i+1 = ap,i +
tp
n
vp cos (ci) , i = 0, . . . , n− 1, ap,0 = xp0,

bp,i+1 = bp,i +
tp
n
vp sin (ci) , i = 0, . . . , n− 1, bp,0 = yp0,

ci+1 = ci +
tp
n
dp,i, c0 = ϕp0,(

ap,n − ae,n

)2
+
(
bp,n − be,n

)2 − d2 = 0.

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

(14g)

(14h)

(14i)

(14j)

We note that in the above BOCP, ts, as,i, bs,i, ci, ds,i, s = p, e, i = 0, . . . , n are decision variables.
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4.3. ABC Approach

There are various solution approaches for bilevel programming problems [8]. These methods need some require-
ments such as regularity and convexity to guarantee the convergence. In addition, all of these methods require an
initial guess for solving these problems and may be really sensitive to it. Also, the obtained solution is not always
the global one. A good solution method for solving optimization problems are meta heuristics, which are problem
independent and need no initial guess.

In this paper, an artificial bee colony algorithm is used for solving the upper-level problem, while the lower-level
problem is solved by an NLP-solver. Now, in what follows, the details of ABC algorithm will be described.

Here, each solution is represented by a pair of Xi = (ue(t), te). In the ABC algorithm, the swarm is divided into
two equal groups: a group of employed bees and a group of onlooker bees [1].

The initial population consists of SN solutions (food sources), as follows:

Xi,d = lbd + ψ(ubd − lbd), ∀i ∈ {1, . . . , SN}, ∀d ∈ {1, 2}, (15)

where ψ is a random number within [0, 1] and lbd, ubd are the lower and upper bounds for the dth element of Xi,
respectively. For all of the solution, ue(t) is the angle of evader’s motion and changes in [0, 2π) and te related to
evader’s motion time and it is greater than zero. A more precise lower bound for this variable can be founded by
solving the minimum time optimal control problem with dynamics in HC problem (1). This problem ignores the
role of evader and lets the pursuer to capture him as soon as possible. In this paper, 5 × lb2 is considered as the
upper bound for this variable.

First, for each solution X = (ue(t), te), xe(te) and ye(te) will be calculated through equation (8b) and (8c).
Next, the best response of pursuer to the final position of evader by solving the lower-level problem (8f)-(8j) will
be determined. Suppose that (up(t), tp) is the optimal solution of this problem. Then, by pursuer’s dynamic (8g)
and (8h), we can calculate pursuer’s final position xp(tp) and yp(tp). By theorem 4.1, the fitness function can be
defined as,

fitness (X) =
1

1 + |te − tp|+ | sin(ue(te))− ye(te)−yp(tp)
d |+ | cos(ue(te))− xe(te)−xp(tp)

d |
. (16)

In the employed bees’ phase, the neighborhood of each solution will be exploited, that is for each solution Xi,
a new solution Yi will be generated as follows:

Yi,d = Xi,d + ρi,d(Xi,d −Xj,d), (17)

where Xj is a randomly selected candidate solution (i 6= j), d is a random dimension index selected from the set
{1, 2}, and ρi,d is a random number within [−1, 1]. Once the new candidate solution Yi is generated, a greedy
selection is used, and the better solution between Xi and Yi will be considered as the ith solution.

After completing the employed phase, the probability value for each solution Xi, will be calculated as follows:

Pi =
fitness (Xi)∑SN
i=1 fitness (Xi)

. (18)

By equation (18), for a better solution, the higher probability will be obtained.
In the onlooker bees’ phase, an onlooker selects a solution with probability Pi. In other words, this probabilistic

selection is a roulette wheel mechanism. The neighborhood of this solution will be exploited again as in the employed
bees’ phase.

If a solution cannot be improved over a predefined number, called limit of cycles, then it will be abandoned.
Assume that the abandoned solution is Xi, then the scout bee explores a new one to be replaced with Xi as in
equation (15).

This procedure is repeated until at least one of the following stopping criteria met:

1. The number of cycles is less than a user-defined parameter maxCycle.

2. By equation (16), it is clear that the best amount of fitness is 1. So, an acceptable tolerance ε for the fitness
can be considered as a stopping criterion.

5. Numerical Results

To illustrate and assess the presented method, we have implemented it on a 3.5 GHz PC using Matlab.
Moreover, the Interior-Point Optimization Solver IPOPT [27] is used for solving the NLP (14f)-(14j).
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Table 1: Nine cases (versions) of HC problem. The values of parameters, together with the exact final time and control functions.

Case Parameters of the HC problem Exact Solution
No. ϕp0 xe0 ye0 vp ve d Game time t∗f up(t) ue(t)|t∈[0,t∗f ]

1 0.0 4.0 4.0 3 1.0 1.0 2.50392193161987 +χ[0 , 1.05980557949785] 1.05980557949785
2 0.0 -7.0 0.0 3 1.0 1.0 8.92706433923994 +χ[0 , 3.95137622615996] -2.33180908101963
3 0.0 2.5 7.5 3 1.0 1.0 4.12039939580511 +χ[0 , 1.68583288631328] 1.69076396264651
4 0.0 -1.0 3.0 3 1.0 1.0 9.74025320137715 −χ[0 , 5.06300126020837] 1.22018404697122
5 π/2 3.0 0.0 1 0.1 0.8 3.36271767773564 −χ[0 , 2.09439510239319] -0.52359877559830
6 π/2 2.0 0.0 1 0.1 0.8 2.59420467933156 −1 -1.29710233966578
7 π/2 1.0 0.0 1 0.1 0.8 5.07653935214838 2χ[0 , 0.409889237583752] − 1 2.78895316068613
8 π/2 1.0 -3.0 1 0.1 0.8 6.12206298643345 −χ[0 , 3.48142956304391] -1.91063323624902
9 π/2 0.1 -1.0 1 0.1 0.8 5.34709886709410 −χ[0 , 4.71238898038469] 3.14159265358979

Without loss of generality, the initial position of the car is (0, 0) and the initial position of the pedestrian is
(xe0, ye0). In Table 1, nine cases (versions) of HC problem are considered. These cases are treated in [14, 23, 18] and
are different in the car and pedestrian’s speed, initial position of pedestrian and capture radius. The parameters
of the HC problem and the exact control functions and final time are also given in Table 1. In this table, χ is the
characteristic function.

The parameters of the ABC algorithm are reported in Table 2. For each case, the method is executed ten times

Table 2: ABC parameters for all cases of the HC problem.

Case No. SN limit ε maxCycle

I 5 20 1e-5 500
II 10 40 0.05 1000
III 5 20 1e-5 500
IV 10 40 0.05 1000
V 5 20 1e-5 500
VI 5 20 1e-5 500
VII 10 40 1e-2 1000
VIII 10 40 0.05 1000
IX 5 20 0.05 500

with n = 100. The maximum, minimum and average of the obtained best fitnesses, CPU time and number of cycles
among these ten times, are reported in Table 3. As we see in Tables 2 and 3, for case II and IV the maxCycle

parameter set to 1000 and this stopping criterion is met for all ten executions, However, for remained cases, the
second stopping criterion is met. The best and worst executions for each case are also shown in Figure 1.

To assess the accuracy of the presented method, the following quantities are defined

Ete := |t∗f − te|, Eue
:= max

i=1,...,n
|u∗e(τe,i)− ue(τe,i)| . (19)

The above quantities are reported in Table 4. We see that, by the presented method, satisfactory accuracy within
the heuristic method is obtained.

Table 3: Summaries of the result of ABC algorithm on the HC problem

Case Fitness CPU Time(s) Cycle
No. max avg min max avg min max avg min

I 0.999995 0.999992 0.999990 3070 1086 376 146 76 46
II 0.928090 0.8690927 0.782780 112119 90803 77952 1000 1000 1000
III 0.999997 0.999993 0.999990 2571 958 367 151 77 44
IV 0.817387 0.7770183 0.742328 79414 60910 48199 1000 1000 1000
V 0.999999 0.999995 0.999991 2501 922 257 157 85 51
VI 0.999999 0.9999953 0.999991 3065 1934 1008 230 118 67
VII 0.994790 0.990830 0.984307 40974 28382 369 1000 704 16
VIII 0.987737 0.967191 0.952411 344 196 89 16 11 6
IX 0.985811 0.967772 0.955665 3471 1578 154 488 187 17

160



Z. Yazdaniyan et al., AUT J. Math. Comput., 1(2) (2020) 153-163, DOI:10.22060/ajmc.2019.16949.1025

0 46 146

0.4

0.6

0.8

1.0

Best

Worst

0 1000

0.40

0.60

0.80

0.95

Best

Worst

0 44 151

0.4

0.6

0.8

1.0

Best

Worst

16 1000

0.6

0.8

1.0

Best

Worst

0 67 230

0

0.2

0.4

0.6

0.8

1.0

Best

Worst

0 51 157

0.6

0.8

1.0

Best

Worst

0 1000

0.4

0.6

0.8

1.0

Best

Worst

0 6 16

0.80

0.95

Best

Worst

17 488

0.4

0.6

0.8

1.0

Best

Worst

Figure 1: The worst and best execution of ABC algorithm for all cases.

Table 4: Error of the obtained final time and control of the evader.
Case Eue Ete

I 9.56e-06 6.62e-05
II 8.8e-03 1.09e-01
III 4.9e-03 2.12e-04
IV 9.60e-02 4.2e-02
V 1.77e-06 9.03e-05
VI 2.02e-04 1.00e-06
VII 1.20e-03 3.2e-03
VIII 4.8e-03 8.4e-03
IX 2.00e-03 1.43e-02
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For depicting Remark 2, we can mention case V. The exact solution for this case is shown in figure 2(right). In
this case, the triple (up(t), ue(t), tf ), that is shown in the left figure, satisfies the necessary optimal condition, but
this triple is not even feasible for the bilevel (8).

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Initial Position of the Pedestrian
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Trajectory of the Pedestrian

Trajectory of the Car

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-1.0

-0.5

0
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1.0
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Initial Position of the Pedestrian
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Trajectory of the Car

In time t = 5.1549

the second capture

is occurred.

xx

y y
In time t = 3.3627

the firs capture is

occurred.

Figure 2: (The HC problem in the case V.) Left: the triple (up, ue, tf ) which is not the game solution. Right: the game solution.

6. conclusion

In this paper, the HC problem is reformulated as a BOCP, then by utilizing Euler discretization, this problem is
converted to a parametric bilevel problem. For solving this bilevel problem, the ABC based method is used, while
the lower-level problem is considered as a constraint and is solved by an NLP solver for each member of population.
Nine cases of this game are examined and good solutions for all cases are found. By this paper, we showed that
the heuristic ABC algorithm can solve the HC problem directly and without relying on the necessary optimality
conditions. We believe that the presented method can be extended to solve the differential game problems with
sophisticated dynamics.
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