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1. Introduction

It is known that nonlinear complex physical phenomena can be related to the mathematical model of nonlinear
equations in physics. The nonlinear wave is one of the most important scientifie'research areas. Many scientists
developed different mathematical models to explain the wave behaviour, su¢h, as the KdV equation, the RLW
equation, the Rosenau equation, and many others. In the following, thé articlesgives asshort review of these
important wave models.
The KdV equation
Ut + Ug + Uy + Ugpa,

was introduced by Diederik Korteweg and Gustav de Vries [4] in 1895. There are a lot of studies on this equation
and its variational form. The KdV equation, the modified Korteweg-de Vries, the generalised Korteweg-de Vries
are nonlinear partial differential equations arising in the study of a number of different physical systems, e.g., water
waves, plasma physics, harmonic lattices, elastic rods and nonlinear long dynamo waves observed inhe Sun.
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The regularized long-wave (RLW) equation
Ut + Uy + Uly — Uggt = 07

was first put forward as a model for small-amplitude long waves on the surface of water in a channel by Peregrine
[8]«#The vibrations of a one-dimensional anharmonic lattice associated with the birth of the soliton are modeled in
terms of the discrete lattices. If the lattice is dense and weakly anharmonic, the KdV equation is derived. When the
article studies the compact discrete systems, the KdV equation cannot model the wave to wave and wave to wall
interactions forithe dynamics of dense discrete systems. To overcome this difficulty of the KdV equation, Rosenau
proposed thé following so-called Rosenau equation [9]:

Ut + Uy + UUz + Ugzzzt = 0.

This equation was derivedsto. describe the dynamics of dense discrete systems considering higher order effects by
Rosenau [10]. The generalized Rosenau equation is

AR ug + aug + bu"uy + cugpper = 0. (1)

where n > 2 is a positiverinteger.and a,0, c are real valued constants.
For further considerations.of nenlinear waves, the term —u,,; is included in the Rosenau equation. The resulting
equation is usually called the Rosenau-RLW. equation [7]:

Up + Up + Uy — Uggt + Ugzzat = 0.
The above equation was further extended into thé generalized Rosenau-RLW equation (the gR — RLW):
ARpw : upd aupt bu™uy — ditgzr + Clgzeat = 0, (2)

where n > 2 is a positive integer and a, b, c'and dyare real valued constants [11].
On the other hand, to consider another behaviour of nonlinear waves, the viscous term w,., needs to be included
in the Rosenau equation (1). The resulting equation is usually called the Rosenau-KdV equation:

Ut + Uy + UUz + Uppe A Ugaart = 07
and the above equation was further extended into the generalized Rosenau-KdV equation (the gR — KdV):
ARK DU+ aug + bunuz + d2umrx FiCUL = 07 (3)

where n > 2 is a positive integer and a, b, ¢ and ds are real valued constants [2].

The outline of this article is as follows. Firstly, the article computes conservation law of the generalized Rosenau-
type equation using the homotopy operator. Secondly, the article caleulates variational problem and Lagrangian of
the generalized Rosenau-type equation in potential form using the variational problem method. Thirdly, the article
obtains p-conservation law of the generalized Rosenau-type equation in potential formi"using u-symmetry method
and p-conservation law method. Finally, u-conservation law for the generalized Rosenau-type equation is presented
and the article compares the conservation law and p-conservation law of these equations.

2. Conservation law, variational problem, Lagrangian and the Frechet derivative

Muriel, Romero and Olver [5] have expanded the concept of variational problem and conservation law.in the case
of symmetries to the case of A-symmetries of ODEs. They have presented an adapted formulation of the Nother’s
theorem for A-symmetry of ODEs. Cicogna and Gaeta [1] have generalized the results obtained by Muriel, Romero
and Olver in the case of A-symmetries for ODEs to the case of y-symmetries for PDEs, and in the case of y-symmetry
of the Lagrangian, the conservation law is referred to as u-conservation law.

A variational problem consists of finding the extrema of a functional £ = fQ L(z,u™)dz, in"some’class of
functions u = f(x) it is defined over Q. The integrand L(x,u(™), called the Lagrangian of the variational problem
£, is a smooth function of z, u and various derivative of u. The a-th Euler operator is given by E, = > ;(~D) T G

"
fora=1,2,...,q.

Theorem 2.1. If u= f(z) is a smooth extremal of the variational problem £ = [, L(z,u\™)dz, then it must be a
solution of the Fuler-Lagrange equations Eo(L) =0, fora =1,2,...,q.
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If 2 = (2',22,...,27) and P(z,u™) = (Pi(z,u™),..., P,(z,u(™)), are p-tuple of smooth functions of z,u and
the derivatives of u, it can be defined as the total divergence of P to be the function DivP := D1 P, + -+ D, Fp,
where each D; is the total derivative with respect to #7. Let A(x,u(™) = 0, be a system of differential equation.
A conservation law is a relation .
DivP:=Y D;P'=0.

i=1
Div P/ vanishes on all solutions of the system A if and only if there functions QJ(x,u(™) such that DivP =
va J Q] DgA,, for all (z,u). In particular, a system of the Kovalevskaya form satisfies the nondegeneracy condition.
Thetefore DivPe= DivR + Q.A, where Q@ = (Q1,...,Q:), and Q, = >_;(—D),Q;. Replacing P by P — R, the
article get§ an equivalent conservation law

DivP = Q.A.

This is called the charaeteristic form of a conservation law, and @ is called the characteristic of the given conservation
law. Suppose E 4(A,A,) =0,and j =1,...,q. Finally {A,}}_, yields a local conservation law for the system and
A determines a pair of nontrivial local conservation law of (p, o), i.e.

Dp* + Dyp? = AA.
To calculate (p!, p?),.ohe ¢an use strong 2-dimensional homotopy operator

Dip' +Dip* = DTHSf(l,t)f + DtHng,t)f =0

Definition 2.2. The homotopy operators a pairwector operator of (H( (@ f)f, u(r f)f), where

q

dr (t) (t

Hin ! = / D Yl N\ f = / ZT
Jj=1

The z-integrand, T(J( t)f and the ¢-integrand, T ,(w t)f are

i{ t1—1 o
z v h N D
@ f = E:E:(E:E:J( T e (20 )1~ (= Dy )2 ) jf :

t1=112=0 1r1=07r2=0 6’U’:ELlitLZ

N{ N% Lty te—1 8f
ng)f = Z Z (Z Z J@) g7 — m)bl—'f‘l(_Dt)Lz—Tz—l) : 7

J
t1=0t2=1 7r1=07r2=0 auxl,ltLQ

where N7, NJ are the order of derivatives u in  and ¢ and

C(ri+1r2,r1)Ct1 + 1o —1r1 — 18— 1juqg —a1 — 1)
C(L1+L27L1) )

J(I) == J(T’l,'f’27 L1, LQ) ==

Also, JO = J(ra,r1,02,01).

Theorem 2.3 (Noether’s Theorem). Suppose G is a one-parameter group of symmetries of the variational prob-
lem £ = fL (z, u ("Ndz. Let X = £(x,u)0yi + oz, u)0ya, be the infinitesimal generator of G, and Qq(x,u) =

Pa—D i1 «El , the corresponding characteristic of X. Then Q = (Q1,-..,Qyq), is also the characteristic of a con-

servation law for the Euler-Lagrange equations E(L) = 0; in other words, there is a p-tuple P (z, uty = (Py,. "5 P,),
such that DivP = Q.E(L) = Y.?_, Q,E(L), is a conservation law in characteristic form for the Buler-Lagrange
equations E(L) = 0.

The Frechet derivative with respect to a tuple of functions A, (x, [u]) = 0, is defined as
d
DA(P) := . le—o A(z, [u + eP(x, [u])]).
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. For a

0A, 0Q“
ou’ (“)ug
Euler-Lagrange equations E(L) = 0, the associated Frechet derivative is always self-adjoint, namely D*E( L) = Dg ).
Hence in,some sense it implies Noether’s theorem through the relation between characteristics of symmetries and
conservation laws. It is also interesting to realise that self-adjointness of a Frechet derivative is sufficient but not
necessaryfor constructing a relation between symmetries and conservation laws. For instance, skew self-adjointness
is alsofsufficient, namely D% = —Da, for a system, A, (x, [u]) = 0.

A system admits a variational formulation if and only if its Frechet derivative is self-adjoint. In fact, one can
see the following theorem [6].

In components, it is (Da)ag = Y D,. The adjoint operator is given by (Df))as = >_;(=D),)

Theorem 2.4« Let A'= 0 be a system of differential equation. Then A is the Euler-Lagrange expression for some
variational problem £ ="[ Ldx, i.e. A = E(L), if and only if the Frechet derivative Da is self-adjoint: D = Da.
In this case, a Lagrangian for A can be explicitly constructed using the homotopy formula

Llu] = /01 w.A[Au]dA.

3. Conservation law of the genéralized Rosenau-type equation

All the rules in form A = A(&t,u, wy, U, Ugs, Uzt, uge) Of the Eq.(1) are obtained, and the solutions of the deter-
mining system are

where A determines a pair of nontrivial local consétvation law of (p', p?), where
Dop' + Dyp? = AAp.

Table 1 show the local conservation law multipliers forthe,generalized Rosenau equation.

Table 1: (Conservation laws for Eq.(1)

Ay =1 TE) — qu 4bu ! + %cuzmt

(t) 1
Tu =u+ 5cuwwwm

b
n+x

,02 =u-+ %Currrr
Dyp* + Dip* = AR

z 8 2 6 4
TSJ ) = au? + bu" 2 + ECUUgzgt — 5 CULUg e — §CULUgrt T+ & Clgy Uyt

2
TT

4
pt = au+ "R 2 Cliggay

Ay

I
S

(t) 2, 2 2 1
Ty’ =u” + £CUUgzze — FCULUZFE T+ 5 CU

1 _a,?2 b 2 4 1 3 2
p - fu + n+2un+ + gcuumzzt - gcutuza:m - gcumumzt + gcumzuxt

2 _ 1,21 1 1.2
p° = JUT + FCUUzzzr — FCUZUzgr + 75 CULy

D p' + Dp? = AyAg

Tables 2 and 3 show the local conservation law multipliers for the generalized Rosenau-RLW and generalized
Rosenau-KdV equations.
4. Lagrangian of the generalized Rosenau-type equation

The generalized Rosenau equation do not admit a variational problem since it is of odd order, but the géneralized
Rosenau equation in potential form admits a variational problem. The Frechet derivative of the generalized Rosenau
equation is

Da,, = nbu" tu, + Dy + (a + bu™) D, + cD1iDy,

then, it does not admit a variational problem since D} . # Da . But, replacing u by v, for the generalized Rosenau
equation, the article gets the generalized Rosenau equation in potential form:

. n —
ARv P Ugt + AUz + b”Uz Vpa + CUszaaxt = 0.
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Table 2: Conservation laws for Eq.(2)

T
A =1 Tq(j‘ ) =au+ buntl — %dluwt + %Cuwwwt
(t) 1 1
Tu =Uu— §d1u$a2 + gcumwmw
b 2 4
pl = au + mun+1 - gdluazt + gcuzzxt

2 __ 1 1
pr=u— gdluxr + gcuzTTT

T
AN =U Tg ) — au® + bunt? — %dluuzt + %dlumut + %cuumm — %cutuzm — gcumumt + %cumuzt
(t) 2 _ 2 1 2, 2 2 1,2
Ty’ =u” — $diutg, + 3d1u; + FCUULpee — §CURUzze + 5 CUL,
1 a2 b 2 2 1 4 1 3 2
pt = GuP + s utt? = Sdiuugy + 3diug s + 5 CUULgat — 5 CUGr — § CUgUagt T 5 Clpr Ut
1 1 2

2 _ 1,2 17,2, 1 1 1
p° = zu” — gdluum + gdlux + 5 CUUzgzz — §CULUzze + 75CUL,

Table 3: Conservation laws for Eq.(3)

A
A =1 Tl(f) = au + bt + dotgy + %cumzt
Pl = at+ Lum T+ dygs + § CUgaer

2 _ 1
P =u + gcumzzx
© 2 4
Ao =U Tg ) — qu? + bu" 2 + 2doutny, < doud + %cuuzmt — FCUUgy — gcuzumt +  CUga Uzt

(t) 9 5 2 1.2
T =% 2eutiarns — 2cUatiaes + Sou?,

1_a,?2 b n+2 1 2 4 1 3 2
pt = Gut + o ut 4 datig, — daURERE Ut — §CU e — § CUpUagt T E CUg Ut

2
2 _ 1.2 1 1 1 2
p- = ju + gcuuza:a::v - gcuzuzaja: + ﬁcuwz

The Frechet derivative of the Apg, is
Da,, = DuDi 4+ nbv" tvggD, + (a =) D? 4 cD3 Dy
and it is self-adjoint: D}, = Dap,. According to Theorem 2.4; the Ag, has a Lagrangian of the following form
! 1 2
L] = /0 V. ARy [Av]dA = —5 (Um’Ut + avi + mbv;” + cvzmvmt) + DivP.
Corollary 4.1 (Lagrangian of the Ag,). The 3-th order Lagrangian-of the Ag,, up to Div-equivalence is

2

——=b nt2 T xm)
(n+1)(n+2) (U + CUszVaat

1
LAy, v] = -3 (vxvt + avi +

Table 4,5 show the following results for the Lagrangian are obtained from the generalized/Rosenau-RLW equation
in potential form (the Agw,) and the generalized Rosenau-KdV equation in potentialform (the Agrx, ).

Table 4: Lagrangian for the Ay,

The Frechet derivative Dyr_rrw, = DD + nbv'g’j_lvaaC + (a+ bvg)Di — dlDiDt + cDth

Lagrangian Lor—rLw,[V] = —% (vzvt +av2 + Mwbvg“ + d1 VUt + cvmmvmt)

Table 5: Lagrangian for the A g,

The Frechet derivative | Dyr_prrw, = DyDi + nbv? vy Dy + (a + bv)D? + dy D2 + cD2 Dy

: 1 2 2 2 2
Lagrangian Lyr—Kav,[v] = —3 (vat + vy + G bot? — dov?, + cvxmvmt)
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5. p-conservation law and the 3—th order Lagrangian

Let A(x,u(™) = 0 be a scalar PDEs for u = u(z',...,2?) and p = A\;da’, be horizontal one-form on first order
jet space (JW M, m, M) with condition D;\; — D;\; = 0, where \;: JWM — R [3]. Suppose X = 0, + 00,
is a vector field on M. The p-prolongation of X on n-th order jet space J"M is Y = X + Z§:1 U ;0,,, and its
coefficient8atisfies the p-prolongation formula

Uii=(Di+ )V —ugm(D; + A)E™, (4)
where Uy = @iLet Y : S — TS, and S ¢ J® M be the solution manifold for A, then X is a p-symmetry for A.
A consefvationdaw is a relation DivP := Y7 | D;P" = 0, where P = (P!,..., PP) is a p—dimensional vector.

A p-conservagion law ista relation as ‘
where P! is & vector and.the M —vector P? is called a u-conserved vector.

Theorem 5.1. Consider the n=th order Lagrangian L = C(x,u(”)), and vector field X, then X is a p-symmetry
for L, i.e. Y[L] =0 if and only if there exists M —vector P? satisfying the u-conservation law (D; + \;)P* =0 [1].

Let £ be a second order Lagrangiandnd the vector field X = ¢ (0/0u) be a p-symmetry for £, then the M —vector

oL oL
+((Dj + Aj)¢)5— —¢D

- oL
Pt =p— )
v 8uij L Buij’

8ui
is a u—conserved vector.

Theorem 5.2. Consider the 3—th ordersLdgrangian £ = L(x,t,ug,...,use), and vector field X, then X =
0 (0/0u) is a p-symmetry for L, i.e. Y[L] = 0 iffand only if the M —vector

; oL oL oL
Pt = Yo + (D + )\j)(ﬂ]‘—au” — @Dj—au__
0 79 19

()

oL oL
(D D:+ A\ — oD,
(D, + )‘k)([( i+ Al Oty P 8Ujki>7
satisfying the p-conservation law (D; + X\;) P* = (04

Proof. Let X = ¢ (9/0u) be a p-symmetry for £, its three p-prelongation is

0 0 0 3 0
Y=g+ [(Dz + A1)el au. T (D + )\2)@]87% + o+ (Do 4 A2)7¢] D
Applying this to the Lagrangian £, one can see
. oc oL oL 3 1 0L
YIL] = oo+ (Do + Mgl —+ (D + A2)so]8—ut 5 Dy + 22)3 ) D
and integrating by parts, one gets
_qoc oL oL 5, 0L 3 0L
YiL)= w(au Dz(pﬁux Dt(p@ut + Dm‘paum * Dt(p&utt)
L oL oL
+ (D 20) [ + D5+ Xl o= = 9D o= = (Du A ([(Dy + )¢
oL oL oL oL oL
D ® J%)} + (D + )\2)[@67% +[(D; + Aj)‘ﬂ]@ - T o,
oL oL
= (Dr+ M) (103 + )l 5 = @Dy =) |
To put
i,k e 2L oL el 2L | o€
Phim g + D+ )l gs = eDig = (Dnt ) ([0 + X)el 5= = eDig =),

Then there is: .
YI[L] = pE(L) + (D; + \;) P,

where E' is the Euler-Lagrange operator. The Euler-Lagrange equations F(£) = 0 it vanishes the three term on
solutions to the equations, hence this reduces to

Y[L] = (D; + \)P".
This shows that Y[£] = 0 implies (D; + \;)P? = 0. The M —vector of P! implies Y [£] = 0. O
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6. p-conservation laws of the generalized Rosenau-type equation in potential form

The author considers the 3—th order Lagrangian La,, [v] for the generalized Rosenau equation in potential form,
then
Apy = E(‘CARu)'

Let X' = ©0, be a vector field for La,, [v] and pu = Ajdz + Aadt be a horizontal one-form so that D;A\y = Dy
when Ag, = 0. According to (4), u-prolongation of order 3 of X is

Y = 0y + V70, + V'O, + U9,  +---+ V"9, |
wheré coefficients ¥ are as the following:

V"= (Do +A)p,  U'=(DitAa)p, U= (Dy+M)T7,
=D, + M) U7, U = (D + AT, U = (D, 4 AT,
‘l/acxt — (Dt + )\Z)LIJQT$7 \I/ﬂctt — (Dt + /\2)\Ifxt, \Ilttt — (Dt + )\2)\11“.
Therefore, the peprolongation Yaacts on the La,, [v], and replacing v; by (avg + (2/((n + 1)(n + 2)))bvr+2 +

cvzmvmt) /(1/2)v,, one can'find the system of equations
—(3/2)epyy = 05 —(1/2)chapy, =0, —(1/2)cp: =0, ... (6)
Let F(z,t) be an arbitrary positive function satisfying L, [v] =0, and ¢ = F(z,t), then

Fo(x,t)
F(z)t)’

Ft(x, t)
C F(x,t)’

AL =— Ay =
are special solutions of the system (6), where D;\y=2D, \5. Therefore, X = F(x,t)d, is a p-symmetry for La ,, [v]
and according to Theorem 5.1, there exists M#vector P*satisfying the u-conservation law (D; + \;)P* = 0. Then,
using (5), the M —vector P? are as the followings

1 2
P! = —EF(x,t)(vt + 2av, + >

1
P! = —SF(x.1) (vx + cvmm) , (7)

+1
bU;L + Cvxa:mzt) )

and (D; + \;) P’ = 0, is a p-conservation law for 3-th ordér Lagrangian £ ., [v].

Corollary 6.1. (u-conservation law of the Ag,)
The p-symmetry of Lgg,[v] is X = F(x,t)0, and p-conservation law for the generalized Rosenau equation in
potential form is (D; + \;) P = 0, where P! and P? are the M —wector P'of (7).

Corollary 6.2. (u-conservation law of the Ag, and the Noether’s Theorem,)
w-conservation law of the generalized Rosenau equation in potential form, satisfying to the Noether’s Theorem for
p-symmetry, i.e.

(D; + X\))P" = (Dy 4+ A1) P + (Dy + A\2) P?
= F(.’IJ, t) (Umt + AVze + bU;LUxa: + Cvzwzxa:t)

=QE(La,,)-

Tables 6 and 7 show p-symmetry, p-conservation law and the Noether’s Theorem for the generalized Rosenau-RLW
and generalized Rosenau-KdV equations in potential forms.

7. p-conservation laws of the generalized Rosenau-type equation
The author considers the generalized Rosenau equation in potential form:

Dy (v + avy + (b/(n + 1) + cvppnt) = 0,
and that is equivalent to

Vg + avg + (b/(n + 1))U;L+1 + CVppzzt = f(t)a
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Table 6: p-conservation law for the Agyy,

p-symmetry of Lor—rrw, [V] X = F(x,t)0,
p-conservation law P'= —1F(x,t) <'Ut + 2av, + ST = 2d1 v + Cvmmt)
P? = —1F(x,t) (’Ux + cvmxm)
The Noether’s Theorem (Di +M)P' = QE(La gy, )

Table 7: p-conservation law for the Ag g,

p-symmetry of Lor—kav, V] X = F(x,t)0,
ji-conservation law P! = —2F(z,t) (v + 2av, + n%_lbv;”l + 2dovgpy + cvmmt)
P? = —1F(z,t) (vx + cvmmx)
The Noether’s Theorem (D; + M)P' = QE(LApg,)

where f(t) is an arbitrary funetion. One can substitutes f(t) —av, — (b/(n+ 1))v2 Tt — Cvppzae for v and substitutes
u for v, in the M—vector P? of (), then, ohe obtain M —vectors P and P?:

un+1) ,

P = —%F(w, t) (u + cumm) . (8)

P2 —%F(m,t)(f(t)Jraqu P

Corollary 7.1 (u-conservation law of the Eq.(1)). u-conservation law for the generalized Rosenau equation is
(D; + \;) Pt = 0, where P! and P? are the M —vector P* of (8):

Corollary 7.2 (the Eq.(1) and characteristic form). Thegeneralized Rosenau equation satisfying to the char-
acteristic form, i.e.

(Di + \))P' = (D, + \1) P + (Dgd o) P2
= F(JJ, t) (ut + auy + bun’ux + Cuac:cam't)
— QAR

Therefore, table 8 shows p-conservation law for the generalized RoSenau equation.

Table 8: p-conservation law for the Eq.(1)

pi-conservation law | Pl = —1F(z,t) (f(t) +au + %Hu”‘*‘l)
P? = —1F(x,t) (u + cumm)
Characteristic form (D; + X)) PP = Q.Agr

Tables 9 and 10 show p-conservation law for the generalized Rosenau-RLW and generalized Rosenau-KdV equations.

Table 9: p-conservation law for the Eq.(2)

pi-conservation law | Pl = —1F(z,t) (f(t) +au + Luntt — dluzt>
P? = —1F(z,t) (u + cumm)
Characteristic form (D; + \i) P = Q.Arw
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Table 10: p-conservation law for the Eq.(3)

p-conservation law | Pt = —1F(x,1) (f(t) +au+ %u”“ + dzum)
P? = —1F(z,1) (u + cumm)
Characteristic form (D; + \)P' = Q. ARk

Conclusion

Tables 1, 2, 3 and tables 8, 9, 10 also compare the conservation law and the p-conservation law of the generalized
Rosenau equation, the generalized Rosenau-RLW equation and the generalized Rosenau-KdV equation.
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