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ABSTRACT: Due to the development of social networks and the Internet of Review History:
things, we recently have faced with large datasets. High-dimensional data is mixed Received:05 June 2022

with redundant and irrelevant features, so the performance of machine learning Revised:28 January 2023
methods is reduced. Feature selection is a common way to tackle this issue with Accepted:12 February 2023
the aim of choosing a small subset of relevant and non-redundant features. Most “vailable Online:01 April 2024
of the existing feature selection works are for supervised applications, which as-
sume that the information on class labels is available. While in many real-world Keywords:
applications, it is not possible to provide complete knowledge of class labels. To
overcome this shortcoming, an unsupervised feature selection method is proposed
in this paper. The proposed method uses the matrix factorization-based regularized
self-representation model to weight features based on their importance. Here, we
initialize the weights of features based on the correlation among features. Several
experiments are performed to evaluate the effectiveness of the proposed method.
Then the results are compared with several baselines and state-of-the-art methods, MSC (2020):
which show the superiority of the proposed method in most cases. 68T30: 63TO1
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1. Introduction

High-dimensional data results from the improvement of digital technologies, social networks, and the Internet of
things [39]. In general, the high-dimensional involves irrelevant, redundant, missing, and noisy features, which harm
the performance of machine learning methods and increase the time complexity [39, 38]. A primary solution is to
choose a small number of features that can approximate the properties of the original data [39]. For example, a
prediction task on social media includes many features as inputs which increase the time and memory complexities
of the machine learning methods. Therefore, using the data processing to choose a small set of informative features
helps machine learning methods analytically be practicable in low-dimensional space [4].

The main aim of the feature selection algorithm is to improve predictive accuracy, increasing comprehensibility
and speeds of machine learning algorithms by identifying relevant features and eliminating irrelevant, redundant,
or noisy ones. Those features without carrying predictive information regarding the class attribute are known as
irrelevant features. Moreover, those redundant features provide no more information than the currently selected
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ones. Feature selection methods have many real-world applications such as text classification [1, 21], clinical dataset
classification [35], Alzheimer’s classification [20].

In [30] an unsupervised feature selection initiated from the subspace clustering to keep the similarities by
representation learning of low dimensional subspaces among the samples. A unified objective function aligned with
an Ly 1 —norm to address a regularized regression model.

Many feature selection methods are proposed as a pre-processing method to select relevant features and eliminate
redundant ones. These methods are divided into filter, wrapper, and embedded approaches [32]. Wrapper methods
utilize a learning model to evaluate the feature subsets. Although, these methods provide accurate results, however,
learning algorithms are time-consuming and cannot be applied to real-world applications with thousands of features
[12]. In contrast, filter-based methods use a statistical measure to evaluate the importance of features. They
generally compute the relevancy of features to the target classes and measure the redundancy of selected features.
Thus they are more efficient than the wrapper ones in terms of time complexity [9, 19]. Embedded-based methods
integrate both wrapper and filter methods into the learning process. It is generally an NP-complete task and finding
an accurate solution is impossible for real-world applications. To this end, several swarm intelligence-based methods
such as Ant Colony Optimisation (UFSACO) [37], Particle Swarm Optimisation, Artificial Bee Colony [11], Firefly
Algorithm [21, 27], Grasshopper Optimisation Algorithm [14], and Salp Swarm algorithm [13] was utilized to find
a near-optimal solution within a reasonable time.

By considering using the class label in the feature selection process, these methods are categorized into super-
vised, semi-supervised, and unsupervised machine learning [32]. Most existing techniques are only proposed for
supervised tasks and fail while the class labels are inaccessible. To this end, several unsupervised feature selection
methods are introduced [18]. Unsupervised feature selection is indispensable in many data mining applications
because of instances with unknown labels in data [26]. The method proposed in [44] combines the correlation
coefficient and mutual information to compute the correlation between features and consider the correlation value
as the redundant weight among features.

Some unsupervised feature selection methods use evaluation measures to rank them and choose those high-
ranked ones [45]. Recently, Nonnegative Matrix Factorization (NMF) was used to weigh features effectively. In [39],
the idea of NMF for subspace clustering was used to formalize the feature selection task and developed an iterative
method to obtain the NMF components. Most of these works learned a cluster indicator and used it to perform
the feature selection. However, the learned indicator may be far from the real clusters and mislead the feature
selection process. To solve this issue the idea of self-representation is proposed. Each feature is represented by a
linear combination of the other features using this idea. For example, in [45] a self-representation method combined
with the objective function of NMF is used for unsupervised feature selection. In [46] the authors combined the
idea of self-representation with principal component analysis for unsupervised feature selection.

Authors of [25] incorporate the manifold regularization into the feature selection model to find the low-dimensional
embedding. Due to the improvement in the performance and simplicity of implementation, the local linear embed-
ding has received much attention from researchers. However, self-representation and manifold learning are usually
applied to the original feature subspace, which results in suboptimal solution. The authors of [33], integrated
both graph matrix learning and low-dimensional space learning into a single framework. In [38] self-representation
and manifold regularization are embedded for unsupervised feature selection. The authors of [10] proposed an
unsupervised feature selection by using graph matrix learning and low-dimensional space learning. In [43], the
authors recently employed self-paced learning regularization for unsupervised feature selection. Self-paced learning
uses the theory of curriculum learning, which first learns the simple knowledge and then gradually increases the
learning difficulty. In [6] deep learning strategies along with some non-linear functions are used together to provide
a representation or a decision, and a cascade of embedding is used to rank features and eliminate the redundant
ones.

Existing unsupervised feature selection methods suffer from some significant issues. First, most of them are based
on self-representation learning. Each feature is considered as a linear combination of the other features, results to
getting more information about the original feature space. Most of the existing unsupervised feature selection
methods employ the global geometrical data structure. Using the local structure of data is much more critical than
the global one in the unsupervised feature selection. To solve these issues, in this paper, an unsupervised feature
selection method based on nonnegative matrix factorization and subspace clustering is proposed. The proposed
method uses the idea of subspace clustering to preserve the local structure of data and employ it in the feature
selection process. Then the idea of nonnegative matrix factorization is used to weigh the features and then select
those of the top high-weight ones. The gradient descent method is then used to solve the objective function. Finally,
an iterative update algorithm is proposed to identify the main components. Here we have used a novel method
based on subspace clustering for initializing the weights of features. The proposed method has several novelties
compared to the state of the art methods, which are listed as follows:

e The proposed method is a filter feature selection which means that it does not employ any learning model to
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evaluate the feature subsets.

e This method first weights the features byconsidering the importance and then chooses a set of top valued ones
as a final feature set. Unlike self-representation methods which consider each feature as a combination of all
other features that may result in losing information.

e Whole feature space is used to weigh the features.
e The proposed method uses subspace clustering to incorporate the local manifold of features in its process.

e Our method is based on the nonnegative matrix factorization methods. In this paper, we proposed an
iterative process to find its components. Here, the results of subspace clustering are used as initial values for
the components to avoid trapping into the local optima.

Several experiments were performed to assess the performance of the proposed method. The obtained results
show the effectiveness of the proposed method compared to a set of traditional and state-of-the-art feature selection
methods. The remainder of this paper is organized as follows. Section 2 provides a survey on existing feature
selection methods. Section 3 provides the details of the proposed method, and the results of experiments are
provided in Section 4. Finally Section 5 concludes the paper and provides some future works.

2. Related Work

The feature selection method aims to choose a set of relevant and non-redundant features among thousands of those
features to improve the performance of the machine learning methods. These methods are generally classified into
supervised, semi-supervised, and unsupervised methods. The class label is provided through the feature selection
process in supervised methods. A majority of feature selection methods belong to this category. While in many
real-world applications, the class labels are unknown. To solve this shortcoming, unsupervised feature selection
methods aim at choosing the features without requiring the class labels. This is a complex task, and till now,
only a few unsupervised methods have been proposed. Some evaluation metrics such as Fisher score (FS), Rank
ratio, Laplace score (LS), and Variance to evaluate were used in unsupervised methods to specify the importance
of features. In some cases, some instances include labels, and any label does not provide others. Semi-supervised
methods are proposed to deal with the tasks with labeled and unlabeled instances. Semi-supervised methods seek
to take the model structure of the data from labeled samples and then utilize it for unlabeled ones [43]. In [46] a
sparse learning framework combined with subspace learning is used for unsupervised feature selection. The locality
preserving property is used to keep the locality preserving projection to keep the local structure of data. Unlike
previous works, using the principal component analysis preserves the maximum variance of the data. However,
fisher score ignores the local information just as ignores the correlation between features. To tackle this issue,
the authors of [9] proposed a criterion called iteratively local fisher score which pays more attention to the local
structure of data.

Several unsupervised feature selection algorithms were proposed to deal with the high-dimensional issue in the
absence of the class label. For instance, in [19] the top high ranked with maximum variance and discriminative
enough for classification are chosen as the final feature set. Laplacian score [12] is another unsupervised method that
identifies features that preserve the local manifold structure of data. Some other criteria such as feature similarity
[26] and trace ratio [29] were proposed to identify the importance of features. In [4], a method called Multi-Cluster
Feature Selection (MCFS) was proposed, which holds the local manifold structure by using the spectral analysis
and then identifies those features that keep the clustering properties in advance. A flexible manifold embedding
as an accepted dimension reduction framework was proposed in [28]. Several feature selection methods used this
type of embedding. A robust unsupervised method was proposed in [33]. This method uses a flexible manifold
embedding, NMF, and L ; —norm to run both feature selection and clustering methods simultaneously. A general
framework using sparse representation and joint embedding was proposed in [15]. Recently, some methods based
on the self-representation-based methods were proposed [38, 45, 46, 43, 24, 34, 16]. The main idea approximates
features via a linear combination of its relevant features. The coefficient matrix with sparsity constraint is then
employed as weights of features.

Early studies show that keeping the local manifold structure of data is an essential task in unsupervised feature
selection [23]. As a result, many unsupervised feature selection methods make extensive use of the graph Laplacian
regularization term to capture local geometric structure [34, 16, 23, 22, 40, 42]. Recently several unsupervised
methods for feature selection that use self-representation and graph regularization employ the Frobenius norm in
their objective functions. The models become sensitive to outliers if this norm is used. A fixed similarity graph
is also part of most existing graph-regularized methods, which are manually set beforehand to preserve the local
geometric structure. Due to the unreliable similarity graph and improper assignment of neighbors, suboptimal
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results are generated. To solve the issues mentioned, an unsupervised feature selection algorithm was proposed In
[38] by utilizing dual self-representation with manifold regularization.

The authors of [22] integrated the local geometric structure consistency and redundancy minimization into a
unified framework for unsupervised feature selection. The pairwise constraints are also used in [11] to specify
whether a pair of data samples belong to the same class or different classes. In many tasks, pairwise constraints
arise and are more practical and cheaper than class labels. In [28], a robust feature selection method is proposed
that utilizes Lo ;—norm which is robust against outliers. The regression-based objective function used in this
method efficiently identifies prominent features. Many methods have also employed flexible manifold embedding
as a general framework for dimensionality reduction. In [42] a spectral feature selection algorithm is proposed for
managing feature redundancy. The formulation for this method is based on a sparse multi-output regression with
a Lo j—norm constraint. This is done by measuring their ability to keep sample similarity and relevant feature
identification [42].

The main aim of unsupervised feature selection algorithms is to choose those features that preserve the data’s
manifold structure in advance. The authors of [40] proposed a method that merges both discriminative analysis and
L 1 —norm minimization. A linear classifier was used to approximate the class label in this method. This method
simultaneously exploits discriminative information and feature correlations. In [38] proposed an idea based on the
dual self-representation and manifold regularization for weighting features without requiring the class label. This
method learns the feature representation to indicate the importance of features. This method learns the similarity
graph to preserve the local structure of data. Due to the use of Ly ; —norm it is robust to outliers. A hybrid method
by integration of feature selection and feature weighting was proposed in [36].

The method proposed in [7], keeps the local structure of data by using Ls 1 —norm and clustering. This method
uses the cluster centers as pseudo labels of the data. This method proposed two matrices, one for the latent cluster
centers, and the other for sparse representation. The first matrix ensures that pseudo labels are closer enough to
the real cluster centers and also helps the sparse representation of different classes far enough away from each other.
Therefore, sparse representation preserves local structures and manifold regularization preserves the geometrical
structure of data.

The idea of the proposed method in [8] was that a sparse representation of data ideally corresponds to a com-
bination of a few points from its subspace. An unsupervised feature selection combined with subspace clustering
was proposed in [39]. This method uses matrix factorizing along with a kernel method for unsupervised feature
selection. The authors of [45], proposed an algorithm named RMFFS, which stands for Regularized Matrix Fac-
torization Feature Selection which works as unsupervised feature selection. Due to the use of matrix factorization
for feature selection, taking the correlation among features into account is the main advantage of their algorithm.
In comparison with RSR and MFFS, this method has the following advantages first feature selected by RMFFS
can approximately represent all features of the original dataset, and also they have low redundancy that is a result
of imposing a combination of L;—norm and Ls—norm as regularization. In [34] an unsupervised feature selection
is based on self-representation. The algorithm preserves the local similarity, and the manifold of data is the main
properties of this method. A coefficient matrix is constructed using an Lj ;/o—norm and the subset of feature is
selected by this matrix. An unsupervised graph-preserving feature selection was studied [10]. Local and global
correlation among features is considered in this study. In this study, LLE is embedded to achieve a promising result
for classification application. Similarity information has an essential role in many feature selection methods. In [17],
the similarity is used to construct a matrix graph, and it makes the algorithm to be more reliable against the noises
and outliers. They used Lo ;—norm in AGUFS to select a more acceptable subset of features. An unsupervised
feature selection based on graph regularization and local linear embedding was proposed in [25]. They focused on
preserving the local manifold of data in selected subspace. This method uses a matrix in which the neighborhood’s
relationship among data is preserved. GLLE implies the L;—norm for eliminating the negative effect of noise on
outlier data samples.

In [31] an unsupervised feature selection approach by applying dictionary learning idea in a low-rank representa-
tion is introduced, named DLUF. Low-rank dictionary learning not only provides a new data representation but also
maintains feature correlation. Then, spectral analysis is employed to preserve sample similarities. Finally, a unified
objective function for unsupervised feature selection is proposed in a sparse way by an Lo ; —norm regularization.

In [41] a sparse learning approach is designed to propose an unsupervised method, called SLSP, which takes
both global and local structures of the samples into account, and considers the discriminative information through
a clustering approach. Same as before mentioned studies a unified objective function by an L; —norm regularization
is applied for feature selection.
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3. Proposed method

This section aims to provide the details of the proposed unsupervised feature selection method. The main purpose
of the proposed method is to choose a set of feature subset without requiring the label information. Real-world
datasets often have a lot of redundant features and outlier samples. A robust and efficient feature selection algorithm
is a method that can indicate the redundant features and reduce the effect of the outliers. Inspired by [45], the
objective function of the unsupervised feature selection using self-representation is defined as:

OF; = min F(X — XW) + AR(W), (1)

where X = [xl, Toy... ,:En] € R(™*™) shows data, m and n are the numbers of features and instances, respectively.
Moreover, W € R(™*™) is the weight matirx of features, F is the loss function, R(W) shows a regularization term
to control the diversity of weights, and the positive coefficient is defined by a constant value called A\. The model
in Eq. 1 is a type of regularized self-representation that can be used for unsupervised feature selection approaches.
This model replaces the input matrix (X) with the target matrix (Y). This is the main idea of the self-representation
principle. In other words, each feature is represented a linear combination of other features, which shows as follows:

m

fi =Y fowij + e, (2)
F=1

where f; is the feature vector in X and w;; shows the correlation between f; and f;. The input data can be computed
as a linear function using the self-representation property:

X =XW + E. (3)

Note that W represents the weight of features and forces E to small values. Also, Frobenius norm is used to
minimize E:

min || X — XW||%. (4)
Note that the Frobenius norm is sensitive to outliers. To solve this issue the Ls;—norm has been proposed to

improve the robustness of E in the presence of outliers. Therefore, the objective function of equation (1) can be
rewritten as:

w
Let W = [wl; .. ;wi;...;wm], where w; is iy, row of W. ||w;||2 reflects the importance of the iy, feature in
representation, therefore, it can be used as the feature weight. And let R(W) = ||wj||21 = Z;nzl lw;|l2 to force the

sparsity of weights. Consequently, the weights of features are obtained through optimizing the following equation:
W = argmin,|| X — XWa1 + A|wl|2,1. (6)

Using IRLS (Iterative Reweighted Least-Squares) [45] two diagonal weighting matrices are defined,G%;, and G%,.
Where g ; = and gp ; = L _ W is updated when the following weighted least squares problem is

solved:

1
2|z —z W llwtll2

W = argminy Q(W|W*) = argminw {tr(X — XW)!GY (X — XW)) + A\WTGLW). (7)
In addition, by transforming presented L, 1 — norm in equation (6) to trace equivalent of it can be shown as:
W = argmingtr(X — XW)TGY (X — XW) + Mr(W!GLW), (8)

where G% and GY% are diagonal matrices, both are necessary for transforming to trace form. Next, it will be
explained how the feature weight matrix will be updated. As it mentioned the objective function of the problem is
shown below:

J:IIHH”XfXWHQ,l +)\Hw||271 (9)

As the weight matrix of features, W is the target variable of this problem, therefore, by deriving the target function
with respect to W, its update equation can be obtained:

aJ
ow
Before solving the above problem, it is necessary to raise some points about the derivation of Ly ; —norm:

=0. (10)
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Table 1: Summary of Literature Review.

3 =
2 K
E |5
: 1 Bk
2 2 = |4
2 = g |2
% = < 3]
0 = L | &
o = = <
Method & Year | ™ = = Innovation
1G S 2006 | - No | No | Elements of information theory
Fisher Score S 2000 | - No | No | Pattern classification
ILFS S 2021 | - No | No | pays more attention to the local structure of
data
Pearson correlation | S 1998 | - No | No | Thirteen ways to look at the correlation coef-
coefficient ficient
MFFS/ KMFFS U 2015 | Filter No | Yes | Subspace learning
DSRMR U 2018 | Filter Yes | Yes | Dual Self-representation
MCFS U 2010 | Filter No | No | Multi-cluster structure, manifold learning,
Spectral clustering
FSSEM U 2004 | Wrapper No | No | Expectation-Maximization (EM)
MRFS S/ 2010 | Filter Yes | No | Sparse multi-output regression
SCFS U 2020 | Filter Yes | No | Subspace learning, Similarity matrix
UDFS U 2011 | Filter No No Discriminative analysis and L2 ;1 —norm
Constraint Score S 2008 | - No | No | Pairwise constraints
RSR U 2015 | Filter Yes | No | Self-representation
Laplacian Score(LS) | U 2005 | Filter Yes | No | -
Trace Ratio 2008 | Filter No | No | Subset-level score(calculates the score of entire
subset)
RUFS U 2013 | Filter No | Yes | Pseudo cluster
JELSR U 2014 | Filter Yes | No | Embedding learning , spare regression
DISR U 2017 | Embedded | Yes | No | Diversity-induced Self-representation
Non-convex RSR U 2017 | Filter yes | No | Self-representation,Ls, p—norm
GSR~SFS U 2017 | Filter Yes | No | Self-representation, Subspace learning, self-
representation
LRSL U 2017 | filter Yes | Yes | Low-rank-approximation, structure learning
SR-FS U 2017 | Filter yes | No | Self-representation
NSCR U 2015 | Wrapper Yes | No | Nonnegative spectral clustering
EUFS U 2015 | Wrapper Yes | Yes | -
GLSPFS S/ 2014 | Filter Yes | No | Global and local structure
GLoSS U 2016 | Filter No | No | Subspace learning
RUFSM U 2017 | Filter No | Yes | Feature selection + clustering
SSC U 2013 | Filter No | no Sparse representation, self-expressiveness
UFSRL U 2019 | Filter No | no Self-representation, sparse reconstruction
RUFS2 U 2020 | Filter No | no Graph matrix learning, low-dimensional space
learning
AGUFS U 2021 | Filter yes | No | Uncorrelated constraints, local structure
learning
JLSPRM U 2020 | Filter No | No | utilizing nonnegative spectral analysis to learn
the cluster labels
DLUF U 2022 | Filter Yes | No | Low-rank representation, sparse learning, sub-
space leanring, dictionary learning
SLSP U 2020 | Filter Yes | No | Takes both global and local structures of the
samples into account

|All2.1 = tr(ADAT) , D = GGT | g;; =

Note 1: Ly 1 —norm of a matrix can be written as follow:
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Based on this point, the above objective function Eq.(9) is rewritten as below:
j= min ||X — XWHQ,l + /\HW”QJ =+ F
=tr(X — XW)GL(X — XW)T) + Mr(WGrW7T).

Now we need to get the derivative of this function with respect to W. Before, it is necessary to provide some points
about the derivative of the trace function.

(12)

Note 2:
otr(XAXT)

_ T
e = XAT XA (13)

Therefore, the derivative of the second part of the objective function will be as:

8F2 - 8/\tI‘(WGRWT)

2 = i =WGEL + WGh. (14)

Now we rewrite the first part of the objective function (Fy):

Fy=tr((X = XW)GL(X — XW)")
= tr(GL((X — XW)(X — XW)T)
= tr(GL(XXT = X(XW)T — (XW)XT + (XW)(XW)T))
(Gl
(

15
=tr(GL(XXT - XWTXT — XxWXT + XWWw'Xx")) (18)
=tr(GLXXT — G XWTXT - GLXWXT + G XxwWwTxT)
=tr(GLXXT) —tr(GLXWTXT) —tr(GLXWXT) + tr(GL XWWTXT).
We get the derivative of the first part with respect to the variable W and we obtain:
ory otr(Gp X XT) B otr(GLXWTXT) B otr(GLXWXT) N otr(GLXWWTXT) (16)

ow oW oW oW oW

By calculating the derivative of each of these terms separately we obtain the derivative of the first term is zero:

3tI‘(GLXXT)
ow

We should state the following point for obtaining the derivative of the second term of Eq. (16):

~0. (17)

Note 3:
8tr(AXTB)

0X

Now, based on this note and considering A = Gp X and B =X T with we obtain the derivative of the second term
of Eq. (16) as follows:

= BA. (18)

Or(AW'B) _ . Ow(GLXWTXT)

_ T
o e =XTGLX. (19)

Now we get the derivative of the third term. It is necessary to mention the following point:

Note 4:
otr(AX B)

X ATBT, (20)

Therefor we obtain the derivative of the third term of Eq. (16) with replacements A = G X and B = X7 as:

Otr(AWB) o _p  Otr(GLXWXT)
av 4B~ oW
97

= (GEX)T(XxTT = XTGTXx. (21)
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Due to the diagonality of G, we have G; = G¥| then the above equation can be written as:

otr(GLXWXT) T
— - = X'GLX.
oW r
Note 5: A -
w —ATBTX + BAX.
0X
So we get the derivative of the fourth expression of Eq. (16) using last note and assigning A with Gy X and B =
as:
otr(AWWTB) T T
——~2 = A"B"W+ BAW
aw *
TyT
S atr(GL)gVVI;W X XTI xw 4 XTGL X W

Now, based on Eq. (15) to Eq. (24) , the derivative of F; with respect to W will be as follows:

OFy _ te(GLXXT)  ote(GLXWTXT)  otr(GLXWXT) N otr(GLXWWTXT)
ow oW oW oW oW
=(0) - (XTGLX) - (XTGLX)+ (XTGEXW + XTGLXW)

Finally, based on the above equations, the derivative of the objective function will be as follows:

J = min ||X — XW||271 —|— )‘||WH2,1 = F1 =+ F2
=tr((X — XW)GL(X = XW)T)+Atr(WGrWT),
and since
9 _0F | 0F
oW oW | oW
= (—XTGLX — XTGX + XTGTXW + XTGLXW) + A\(WGL + WGR),
SO

S—VJV = 2XTQLX + XTGEXW + XTGLXW + \WGE + A\WGR.

To optimize W, we get the root of the above equation, then:

% = 2XTGLX + XTGIXW + XTGLXW + A\WGE + \WWGR = 0,

and we imply that
XTGEXW + XTGLXW + A\WGH + \WGR =2XTGLX.
We multiply both sides of the equation by GEI so that W can be decomposed:

(GR'XTGLXW + GR' XTGLXW + AGR' WG, + \GR'WGR) = 2GR' X G L X.

(22)

(23)

XT

(24)

(31)

Considering that G is a diagonal matrix and its dimensions are the same as W, therefore the following equation

can be changed as:
AGR'WGR = \GR'GRW = A\IW.
Therefore, the Eq (31) is rewritten as follows:

GR'XTGTXW + GR' XTGLXW 4+ 2MW =2GR' XTG L X.
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By decomposing W and considering that GT = G, the equation is rewritten as follows:

2GR XTGLX + D)W = 2GR ' XTG L X. (34)
Therefore, the update equation of W will be as follows:

W= (GR'XTGLX + \)'GRp'XTG X, (35)

where I € R™*"™.

In this updating rule, the weights are initialized with equal and small weigh values (w;; = €) at the first iterations. To
improve the convergence rate we proposed an intelligent initialization mechanism for the weight vector. Additional
details are described in subsequent sections.

3.1. Initialization of weight vectors

In this paper, to enhance the convergence property of self-representation based on feature selection methods, a
new method called (SSRSR) is proposed to initialize the weight matrix W. To this end, first suppose that each
fi € RUX") s the 4y, feature. In our method, the feature space is first mapped to a low-dimension space called
similarity space. To this aim, the Pearson correlation coefficient (PCC) is used to obtain the correlation between
features as:

PCC;; = M7 (36)

OF; JFJ

where cov(F;, F;) function calculates the covariance value between the corresponding features and o(F;) shows the
standard deviation of F;.Since each feature f; can be demonstrated as a linear combination of other vectors in the
similarity space, the subspace coding has been used in this step as [8]:

sim(i, j) = <0 fi). (37)

0f.0f;

Based on the subspace mapping theory [8], high-dimensional data points are located in the low-dimensional sub-
spaces [5]. The similarity value of each feature is a linear form of the other features as:

wf; = Z Vi,j - wfi (38)

J=L1,em, ji

where the similarity weights between features denote by 7;;. These concepts are used to form the optimization
problem with aims to lead to least square errors as follows:

Vi = argminy, |wf; +wfl3+ Ayl (39)
where (wf) = wf\wf;. Also, L; regularization is used to satisfy the sparseness of solutions. The Eq. (39) is convex;
to solve this type of optimization problem. There are several convex optimization tools [3]. In this paper, ADMM
method [2] is used to obtain the sparse representation of each data point in the feature space. Then the similarity
weight matrix W is determined as:

ws — Ji + Vji

ij 9 .

Instead of equal values, we can use the weight values obtained from Eq. (40) to improve the convergence rate of
the unsupervised feature selection method. The pseudo-code of the proposed method is given as follows:

(40)

3.2. Time complexity

In the proposed method we need to update W in each iteration, whose computational complexity is O(m? + m3n),
where n and m are the number of instances features and samples, respectively. The time complexity of the proposed
method is O(T(m? + m3n)), where T is the total number of iterations.
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Algorithm 1 Pseudo-code of the proposed method
Input:

X: m x n matrix

T: Number of iterations

Output:
W: m x m matrix

begin algorithm
using Eq. 14 )

WV, F =15 s
5 i, ] m

Wi =
fort <+ 1to T do
et (e A el e €SV T (e i e 4

end for
return W
end algorithm

Figure 1: Pseudocode of the proposed method

4. Experiment and results

4.1. Datasets

The proposed method runs over the IRIS dataset with 150 samples and four features. Due to the few feature
numbers of this dataset and to see the properties of the proposed method we add seven features to the IRIS
dataset. To this end, we add some relevant, irrelevant, and repeated features. We first run the proposed method on
a fake TRIS-like dataset with 11 features that features 14 to 44, were copied to features 5;, to 8;;, feature 9;, was
completely related with the class label, and features 10;, and 11y, were randomly filled and completely irrelevant.
The results show that this algorithm does not tend to select the 9y, feature and select the other important feature,
while the first selected feature with the old version of this algorithm is the 9 feature. This means that the proposed
method rejects the class-like features. The old version of the algorithm focuses on the 10;, and 114, features with
random values, but the new version solves this problem. The proposed method was implemented on three data
sets: Wine, Sonar and Ionosphere.

4.2. Evaluation measures

In this paper, for evaluating the performance of the proposed method, three standard measures, including F-
measure, precision, and recall, are used. To this end, each method’s selected features are givenUniFeat package
in JAVA, and the outputs are saved in a file and then plotted. The graphical results are shown in a subsequent
section.

4.8. Results and discussion

Figures 2 to 7 show the result of F-measure, precision, and recall on the obove-mentioned dataset. SSRSR is
compared with RSR and some supervised and unsupervised algorithms in terms of the above measures. The result
of implementing the proposed method on these datasest is illustrated in Figures 2 to 7. The vertical axis shows the
feature selection performance value in all these figures, and the horizontal axis represents the number of selected
features. In all experiments including plots and tables, the average value on ten independent runs for each algorithm
is reported. Moreover, 70% of each dataset is randomly selected to train the algorithm, and the remaining 30% is
used to test the method.
In this subsection, we have drawn tables 2-7 which show the comparison results of the supervised (tables 2-4)
and unsupervised feature selection methods (tables 4-7) in terms of F-measure, Precision, and Recall evaluation
measures, respectively. The best results are boldfaced in all tables. Also, the last row of the tables shows the
average of the obtained results of the methods.

Table 2 shows the F-measure values of the proposed method compared to the four well-known supervised feature
selection methods. It can be seen from the results that the SSRSR attained the highest F-measure value compared
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to the other methods. This can be shown especially for a bigger number of features. Tables 3 and 4 report the
Precision and Recall values obtained by the feature selection methods. It is clear based on these tables; our method
has achieved acceptable results compared to the other methods.

Table 2: The F-measure results of the supervised feature selection methods with different number of features for Wine dataset.

k SSRSR FS MRMr LS IG

2 0.7 0.81 0.8 0.72 0.925
4 0.92 0.875 0.86 0.89 0.908
6 0.925 0.924 0.895 0.914 0.93
3 0949 0.939 0.93 0.918 0.93
10 0949 0.93 0.918 0.918 0.93
12 094 0.912 0.9 0.918 0.935
Avg. 0.903 0.898 0.883 0.746 0936

Table 3: The

Precision results of the supervised feature selection methods with different number of featuresfor Wine dataset.

k SSRSR FS MRMr LS IG

2 0.777 0.839 0.819 0.75 0.865
4 0.93 0.9 0.85 0.88 0.945
6 0.94 0.92 0.89 0.92 0.92
8 0.949 0.92 0.9 0.949 0.92
10 0942 0.92 0.92 0.94 0.92
12 0941 0.9 0.929 0.931 0.92
Avg. 0.912 0.899 0.834 0.895 0.911

Table 4: The Recall results of the supervised feature selection methods with different number of features for Wine dataset.

k SSRSR FS MRMr LS IG

2 0.738 0.82 0.852 0.738 0.944
4 0.922 0.894 0.86 0.875 0.948
6 0.93 0.91 0.915 0.911 0.95
8 0.935 0.91 0.902 0.941 0.932
10 0.935 0.91 0.924 0.934 0.923
12 0.935 0.9 0.915 0.921 0.92
Avg. 0.899 0.89 0.894 0.886 0.936

Tables 5-7 show the results of the unsupervised feature selection methods in terms of F-measure, Precision, and
Recall criteria, respectively. It can be seen that the overall performance of the proposed method is much better
than other methods. Also, the results show that the proposed method obtained the best results. It should be noted
that the proposed method works better than other methods in more features and on average.

Table 5: The F-measure results of the unsupervised feature selection methods with different number of features for Wine dataset.

k SSRSR RSR RRFS UFSACO
2 0.742 0.645 0.659 0.808
4 0.911 0.67 0.874 0.802
6 0.91 0.861 0.939 0.952
8 0.948 0.94 0.901 0.952
10 0.949 0.937 0.901 0.934
12 0.945 0.937 0.917 0.917
Avg. 0.908 0.831 0.865 0.894

Table 8 shows the F-measure values of the proposed method compared to the four well-known supervised feature
selection methods. It can be seen from the results that the SSRSR attained the highest F-measure value compared
to the other methods. This can be shown especially for more number of features. Tables 9 and 10 report the
Precision and Recall values obtained by the feature selection methods. It is clear based on these tables; our method
has achieved acceptable results compared to the other methods.
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Table 6: The Precision results of the unsupervised feature selection methods with different number of features for Wine dataset.

k SSRSR RSR RRFS UFSACO
2 0.773 0.611 0.725 0.817

4 0.922 0.708 0.86 0.889

6 0.938 0.881 0.974 0.885

8 0.939 0.942 0.931 0.93

10 0.939 0.935 0.936 0.923

12 0.939 0.939 0.936 0.923
Avg. 0.908 0.836 0.893 0.894

Table 7: The Recall results of the unsupervised feature selection methods with different number of features for Wine dataset.

k SSRSR RSR RRFS UFSACO
2 0.738 0.611 0.7 0.839

4 0.921 0.692 0.871 0.901

6 0.937 0.884 0.95 0.95

8 0.941 0.952 0.923 0.922

10 0.942 0.937 0.923 0.93

12 0.942 0.942 0.923 0.923
Avg. 0.903 0.836 0.881 0.91

Table 8: The F-measure results of the supervised feature selection methods with different number of features for Sonar dataset.

k SSRSR FS MRMr LS 1G

8 0.535 0.672 0.706 0.731 0.672
16 0.635 0.64. 0.659 0.733 0.645
24 0.622 0.696 0.64 0.735 0.696
32 0.711 0.764 0.638 0.692 0.764
40 0.697 0.758 0.646 0.692 0.754
48 0.749 0.751 0.689 0.692 0.749
56 0.692 0.692 0.692 0.692 0.692
Avg. 0.663 0.710 0.667 0.709 0.710

Table 9: The Precision results of the supervised feature selection methods with different number of features for Sonar dataset.

k SSRSR FS MRMr LS IG

8 0.653 0.672 0.716 0.732 0.672
16 0.635 0.643. 0.659 0.659 0.648
24 0.634 0.697 0.643 0.643 0.697
32 0.739 0.764 0.639 0.639 0.764
40 0.747 0.746 0.646 0.646 0.755
48 0.751 0.751 0.694 0.694 0.751
56 0.692 0.692 0.692 0.692 0.692
Avg. 0.693 0.709 0.669 0.672 0.711

Table 10: The Recall results of the supervised feature selection methods with different number of features for Sonar dataset.

k SSRSR FS MRMr LS IG

8 0.558 0.673 0.707 0.731 0.673
16 0.635 0.639. 0.659 0.736 0.644
24 0.635 0.697 0.639 0.736 0.697
32 0.721 0.764 0.639 0.692 0.764
40 0.697 0.745 0.646 0.692 0.755
48 0.750 0.751 0.692 0.692 0.750
56 0.692 0.692 06929 0.692 0.692
Avg. 0.669 0.708 0667. 0.710 0.710
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Table 11: The F-measure results of the unsupervised feature selection methods with different number of features for Sonar dataset.

k SSRSR RSR RRFS UFSACO
8 0.535 0.717 0.642 0.654
16 0.635 0.672 0.657 0.673
24 0.622 0.709 0.731 0.685
32 0.711 0.721 0.673 0.726
40 0.697 0.702 0.707 0.721
48 0.749 0.687 0.706 0.701
56 0.692 0.692 0.692 0.692
Avg. 0.663 0.700 0686. 0.693

Table 12: The Precision results of the unsupervised feature selection methods with different number of features for Sonar dataset.

k SSRSR RSR RRFS UFSACO
8 0.653 0.716 0.642 0.654

16 0.635 0.673 0.658 0.673

24 0.634 0.712 0.731 0.688

32 0.739 0.721 0.673 0.726

40 0.697 0.702 0.707 0.721

48 0.751 0.688 0.707 0.702

56 0.692 0.692 0.692 0.692
Avg. 0.685 0.702 0.687 0.693

Table 13: The Recall results of the unsupervised feature selection methods with different number of features for Sonar dataset.

k SSRSR RSR RRFS UFSACO
8 0.653 0.719 0.642 0.653
16 0.635 0.672 0.659 0.673
24 0.634 0.712 0.731 0.687
32 0.739 0.728 0.673 0.726
40 0.725 0.706 0.707 0.721
48 0.751 0.687 0.707 0.701
56 0.692 0.692 0.692 0.692
Avg. 0.689 0.836 0.687 0.693

Table 14 shows the F-measure values of the proposed method compared to the four well-known supervised
feature selection methods. It can be seen from the results that the SSRSR attained the highest F-measure value
compared to the other methods. This can be shown especially for more number of features. Tables 15 and 16 report
the Precision and Recall values obtained by the feature selection methods. It is clear based on these tables; our
method has achieved acceptable results compared to the other methods.

Table 14: The F-measure results of the supervised feature selection methods with different number of features for Ionosphere dataset.

k SSRSR FS MRMr LS IG

5 0.846 0.906 0.876 0.900 0.867
10 0.858 0.887 0.866 0.880 0.858
15 0.858 0.884 0.876 0.896 0.862
20 0.864 0.849 0.849 0.899 0.862
25 0.865 0.849 0.849 0.866 0.864
30 0.869 0.849 0.849 0.866 0.842
Avg. 0.860 0.875 0.860 0.884 0.859

4.4. Comparison to supervised algorithms

In another point of view, the methods are compared based on a different number of features, and the results are
reported in Figs. 2 and 3. The vertical axis shows the feature selection performance value in all these figures,
and the horizontal axis represents the number of selected features. Figs. 2 and 3 report F-measure, Precision,
and Recall criteria of the supervised methods, respectively. All these results are summarized over ten independent
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Table 15: The Precision results of the supervised feature selection methods with different number of features for Ionosphere dataset.

k SSRSR FS MRMr LS IG

5 0.849 0.917 0.877 0.910 0.868
10 0.860 0.889 0.869 0.887 0.860
15 0.866 0.886 0.877 0.898 0.862
20 0.866 0.880 0.851 0.901 0.862
25 0.861 0.851 0.851 0.869 0.865
30 0.871 0.851 0.849 0.869 0.846
Avg. 0.862 0.879 0.862 0.889 0.860

Table 16: The Recall results of the supervised feature selection methods with different number of features for Ionosphere dataset.

k SSRSR FS MRMr LS IG

5 0.849 0.909 0.877 0.903 0.869
10 0.860 0.889 0.860 0.883 0.860
15 0.860 0.866 0.877 0.897 0.863
20 0.897 0.880 0.852 0.900 0.863
25 0.849 0.852 0.852 0.860 0.866
30 0.852 0.852 0.852 0.869 0.846
Avg. 0.861 0.874 0.861 0.885 0.861

Table 17: The F-measure results of the unsupervised feature selection methods with different number of features for Ionosphere dataset.

k SSRSR RSR RRFS UFSACO
5 0.846 0.887 0.854 0.82

10 0.858 0.858 0.85 0.832

15 0.858 0.849 0.85 0.881

20 0.864 0.849 0.85 0.876

25 0.856 0.849 0.85 0.855

30 0.849 0.687 0.85 0.846
Avg. 0.855 0.856 0.850 0.851

Table 18: The Precision results of the unsupervised feature selection methods with different number of features for Ionosphere dataset.

k SSRSR RSR RRFS UFSACO
) 0.846 0.889 0.854 0.828
10 0.860 0.858 0.85 0.833
15 0.858 0.851 0.85 0.883
20 0.864 0.852 0.85 0.877
25 0.846 0.851 0.85 0.857
30 0.849 0.851 0.85 0.848
Avg. 0.853 0.858 0.850 0.854

Table 19: The Recall results of the unsupervised feature selection methods with different number of features for Ionosphere dataset.

k SSRSR RSR RRFS UFSACO
) 0.846 0.889 0.855 0.826

10 0.858 0.86 0.852 0.835

15 0.858 0.852 0.852 0.883

20 0.864 0.852 0.852 0.877

25 0.852 0.852 0.852 0.858

30 0.849 0.852 0.852 0.849
Avg. 0.854 0.859 0.852 0.854

runs. According to these figures, it is clear that the proposed method achieved the highest values in terms of
the evaluation measures. It has been able to improve performance much faster than other methods. Thus, the
predictive power of selected features will be significantly increased when a higher number of features are selected.
These claims are illustrated in Figures. We can see the good performance of SSRSR against other methods. Figure
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2 illustrates the above metrics of SSRSR and well-known supervised feature selection algorithms Information Gain
(IG), Fisher Score (FS), MRMr, and Laplacian Score (LS). SSRSR is an unsupervised method, in some points of
these charts, SSRSR is more effective than supervised methods.

4.5. Comparison to unsupervised algorithms

F-measure, precision, and recall statistics of SSRSR compared to the old version of this algorithm (RSR) and several
well-known unsupervised feature selection methods that are shown in Figure 3 respectively. Finally the proposed
method is compared with RSR and two other well-known unsupervised algorithms (RRFS & UFSACO) [37]. The
performance of SSRSR is better than others, relatively.
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Figure 2: The comparison of wine dataset values of the proposed method and several supervised feature selection methods with the
various number of features.
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Figure 3: The comparison of wine dataset values of the proposed method and some unsupervised feature selection methods with the
various numbers of a feature.
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Figure 4: The comparison of Sonar dataset values of the proposed method and some supervised feature selection methods with the
various numbers of a feature.

Based on the tests whose results are displayed in the graphs, the advantage of the proposed method over other
methods used in the comparisons can be stated as follows:

e For all three criteria in all graphs, the efficiency of the proposed algorithm is improving by increasing the
number of selected features.

e In some cases, the efficiency of the algorithm is more than other methods.
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Figure 5: The comparison of Sonar dataset values of the proposed method and some unsupervised feature selection methods with the
various numbers of a feature.
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Figure 6: The comparison of Ionosphere dataset values of the proposed method and some supervised feature selection methods with
the various numbers of a feature.
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Figure 7: The comparison of Ionosphere dataset values of the proposed method and some unsupervised feature selection methods with
the various numbers of a feature.

5. Conclusions

In this work, an effective unsupervised feature selection method using the self-representation model for and Non-
negative Matrix Factorization (NMF) framework is proposed. The proposed method uses the inherent information
among features such as similarity properties to select the most effective feature. Results show that the convergence
speed of SSRSR is more acceptable rather than unsupervised (e.g. RSR, UFSACO& RRFS) and even the super-
vised methods (such as IG, Fisher Score, MRMr & Laplacian Score). In other words, using the intrinsic information
hidden among features results in a better subset of original features. There are several ideas to improve our work.
The first one is using some kernel methods embedded into the process of NMF objective function to capture the
nonlinear relation between features. Another one is hybridizing the current work with self-paced methods. This is
for differentiating between simple and hard samples through the optimization process.
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